Optimization of Answer Set Programs for Consistent Query Answering by Means of First-Order Rewriting

Aziz Amezian El Khalfioui Jonathan Joertz Dorian Labeeuw Gaëtan Staquet Jef Wijsen

> Département d'Informatique Faculté des Sciences Université de Mons

29th ACM Int. Conf. on Information and Knowledge Management (CIKM 2020), October 19–23, 2020, Virtual Event, Ireland.

Problem Statement	ASP Programs	Experiments	References
0000	00	000	

- 2. ASP Programs
- 3. Experiments

Problem	Statement
0000	

Experiments 000 References

Inconsistent databases and repairs

r	\underline{Conf}	<u>Year</u>	City	s	\underline{City}	Country
	CIKM	2020	Galway	_	Perth	Australia
	CIKM	2021	Perth		Sydney	Australia
	CIKM	2021	Sydney		Galway	Ireland

Problem	Statement
0000	

Experiments 000 References

Inconsistent databases and repairs

r_1	\underline{Conf}	\underline{Year}	City			
	CIKM	2020	Galway	s	City	Country
	CIKM	2021	Perth		Perth	Australia
m.	$C_{om}f$	or Voar	Cita		Sydney	Australia
T_2		<u></u>		-		
	CIKIM	2020	Galway		Galway	Ireland
	CIKM	2021	Sydney			

Problem Statement	ASP Programs	Experiments
●000	00	000

Inconsistent databases and repairs

"CIKM 2021 will take place in Australia" is certain because it is true for both repairs (because Perth and Sydney are both certainly in Australia).

Problem	Statement
0000	

Experiments 000 References

Consistent (or Certain) Query Answering (CQA)

A database instance may violate its primary-key constraints.

Problem	Statement
0000	

Experiments 000 References

Consistent (or Certain) Query Answering (CQA)

- A database instance may violate its primary-key constraints.
- A repair is any maximal consistent subinstance.
 A database instance with *n* tuples can have exponentially many repairs.

Problem	Statement
0000	

Experiments 000 References

Consistent (or Certain) Query Answering (CQA)

- A database instance may violate its primary-key constraints.
- A repair is any maximal consistent subinstance.
 A database instance with n tuples can have exponentially many repairs.
- A Boolean query (a.k.a. a first-order sentence) is certain if it holds true in every repair.

Problem	Statement
0000	

Experiments 000 References

Consistent (or Certain) Query Answering (CQA)

- A database instance may violate its primary-key constraints.
- A repair is any maximal consistent subinstance.
 A database instance with *n* tuples can have exponentially many repairs.
- A Boolean query (a.k.a. a first-order sentence) is certain if it holds true in every repair.
- For every fixed Boolean query q, we define CERTAINTY(q) as the following decision problem:

Decision problem CERTAINTY(q)

INPUT: A (possibly inconsistent) database instance db. QUESTION: Is *q* certain?

Problem	Statement
0000	

Experiments 000 References

Two approaches for solving CERTAINTY(q)

1. Generate-and-test program Generate all (possibly exponentially many) repairs, and test whether there is one that falsifies *q*.

Problem	Statement	
0000		

Experiments 000 References

Two approaches for solving CERTAINTY(q)

1. Generate-and-test program Generate all (possibly exponentially many) repairs, and test whether there is one that falsifies *q*.

2. First-order rewriting Construct a new first-order query that says: *"q* is certain."

Problem	Statement
0000	

Experiments 000 References

Two approaches for solving CERTAINTY(q)

1. Generate-and-test program Generate all (possibly exponentially many) repairs, and test whether there is one that falsifies *q*.

2. First-order rewriting Construct a new first-order query that says: *"q* is certain."

First-order rewriting: Example

$$q_0 = \exists X \left(r(\underline{\mathsf{CIKM}}, \underline{2021}, X) \land s(\underline{X}, \mathsf{Australia}) \right)$$

" q_0 is certain" = "every possible country Y of every possible city X for CIKM 2021 is equal to Australia":

$$\exists X \left(r(\underline{\mathsf{CIKM}}, \underline{2021}, X) \land s(\underline{X}, \operatorname{Australia}) \right) \land \\ \forall X \left(r(\underline{\mathsf{CIKM}}, \underline{2021}, X) \rightarrow \begin{pmatrix} s(\underline{X}, \operatorname{Australia}) \land \\ \forall Y \left(s(\underline{X}, Y) \rightarrow Y = \operatorname{Australia} \end{pmatrix} \right) \right)$$

ASP Programs

Experiments 000 References

Existence of first-order rewritings

We limit ourselves to sjfBCQ, i.e., the class of self-join-free Boolean conjunctive queries. These are of the form $\exists^* (R_1(\vec{x}_1) \land \cdots \land R_{\ell}(\vec{x}_{\ell}))$ such that $i \neq j$ implies $R_i \neq R_j$.

ASP Programs

Experiments 000 References

Existence of first-order rewritings

We limit ourselves to sjfBCQ, i.e., the class of self-join-free Boolean conjunctive queries. These are of the form $\exists^* (R_1(\vec{x}_1) \land \cdots \land R_\ell(\vec{x}_\ell))$ such that $i \neq j$ implies $R_i \neq R_j$. Not all queries in sjfBCQ have a first-order rewriting. The good news:

Theorem ([KW17; KW20])

Given $q \in sjfBCQ$,

1. it is decidable whether CERTAINTY(q) has a first-order rewriting; and

2. a first-order rewriting for CERTAINTY(q) can be constructed if it exists.

ASP Programs

Experiments 000 References

Existence of first-order rewritings

We limit ourselves to sjfBCQ, i.e., the class of self-join-free Boolean conjunctive queries. These are of the form $\exists^* (R_1(\vec{x}_1) \land \cdots \land R_\ell(\vec{x}_\ell))$ such that $i \neq j$ implies $R_i \neq R_j$. Not all queries in sjfBCQ have a first-order rewriting. The good news:

Theorem ([KW17; KW20])

Given $q \in sjfBCQ$,

- 1. it is decidable whether CERTAINTY(q) has a first-order rewriting; and
- 2. a first-order rewriting for CERTAINTY(q) can be constructed if it exists.

Research question: In Answer Set Programming (ASP), are first-order rewritings more efficient than generic generate-and-test programs?

El Khalfioui, Joertz, Labeeuw, Staquet, Wijsen

Problem	Statement
0000	

Experiments 000 References

NP search for a repair that falsifies the query

Let
$$q_0 := \exists X (r(`CIKM', `2021', X) \land s(\underline{X}, `Australia')).$$

- % Generate a repair of relation r
 { r_repair(Conf, Year, V) : r(Conf, Year, V) } == 1
 :- r(Conf, Year, _).
- % Generate a repair of relation s
 { s_repair(City, W) : s(City, W) } == 1
 :- s(City, _).

Listing 1: Generate-and-test program that searches for a repair that falsifies q_0 .

Problem	Statement
0000	

Experiments 000 References

FO algorithm in non-recursive datalog with negation

Let
$$q_0 := \exists X (r(`CIKM', `2020', X) \land s(\underline{X}, `Australia')).$$

yes :- r('CIKM', '2021', X), not wrongCity(X).

wrongCity(X) :- r(_, _, X), not inAustralia(X).

outAustralia(X) :- s(X, W), W != 'Australia'.

Listing 2: First-order rewriting of q_0 in non-recursive datalog with negation.

Problem	Statement
0000	

Experiments •00 References

Experimental framework

- We fixed a database schema (the one of the running example).
- Our software Conquesto [JLS20] generates all (203 in total) non-equivalent queries on this schema.
- For each query q with a first-order rewriting (194 out of 203), Conquesto generates two ASP programs for solving CERTAINTY(q):
 - 1. a generate-and-test program that searches for a repair that falsifies *q*;
 - 2. a first-order rewriting of q in non-recursive datalog with negation.
- We measure and show runtimes on 'yes'- and 'no'-database instances for CERTAINTY(q), as well as on 'random' database instances [only shown in the paper].
- ► The ASP solver is clingo [Geb+14].

Problem Statement	ASP Programs	Experiments	Refere
0000	00	000	

Results for 'yes'- and 'no'-database instances

Figure 1: Results for 'yes'-instances (i.e., the query is true in every repair).

Figure 2: Results for 'no'-instances (i.e., the query is false in some repair).

Conclusion: First-order rewriting outperforms generate-and-test.

ASP Programs

Experiments

References

Conclusion

- For a Boolean query q, CERTAINTY(q) is the following problem: Given a database instance (possibly with primary-key violations), is q true in every repair?
- We asked the research question: Are there runtime differences between a straightforward generate-and-test program (in NP) and first-order rewritings (encoded in non-recursive datalog with negation)?
- For clingo, our experiments show that the answer to this question is "yes."
- Similar findings were obtained with DLV [LPF11].

Problem	Statement
0000	

Experiments 000

[Geb+14]	Martin Gebser et al. 'Clingo = ASP + Control: Preliminary Report'. In: <i>CoRR</i> abs/1405.3694 (2014).
[JLS20]	Jonathan Joertz, Dorian Labeeuw and Gaëtan Staquet. Conquesto. 2020. URL: https://github.com/DocSkellington/Conquesto/.
[KW17]	Paraschos Koutris and Jef Wijsen. 'Consistent Query Answering for Self-Join-Free Conjunctive Queries Under Primary Key Constraints'. In: <i>ACM Trans. Database Syst.</i> 42.2 (2017), 9:1–9:45. DOI: 10.1145/3068334. URL: https://doi.org/10.1145/3068334.
[KW20]	Paraschos Koutris and Jef Wijsen. 'Consistent Query Answering for Primary Keys in Datalog'. In: <i>Theory of</i> <i>Computing Systems</i> (2020), pp. 1–57. DOI: 10.1007/s00224-020-09985-6. URL: https://doi.org/10.1007/s00224-020-09985-6.
[LPF11]	Nicola Leone, Gerald Pfeifer and Wolfgang Faber. <i>DLV</i> . 1996-2011. URL: http://www.dlvsystem.com/dlv/.