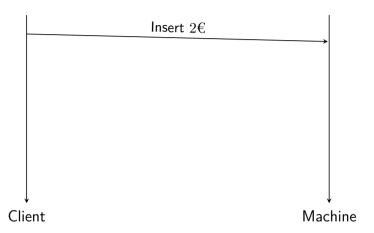
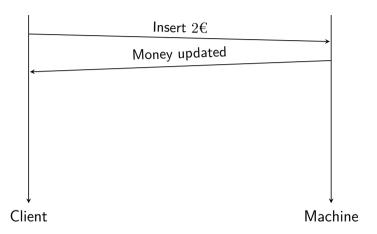
Verification of computer systems thanks to state machines

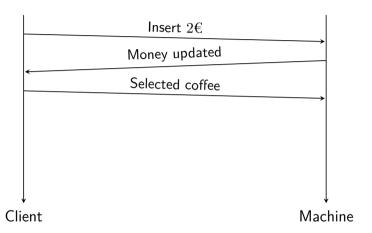
Gaëtan Staquet

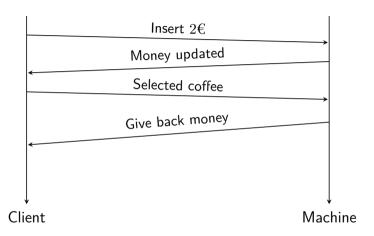
Theoretical computer science Computer Science Department Science Faculty University of Mons Formal Techniques in Software Engineering Computer Science Department Science Faculty University of Antwerp

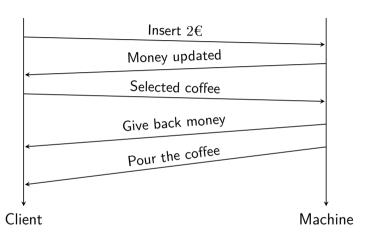
November 15, 2022



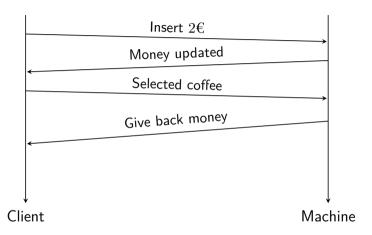




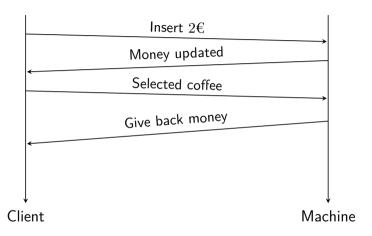




Coffee Machine - Error



Coffee Machine - Error



How can we detect the fault as soon as possible?

Unit tests?

3 / 13

Unit tests?

▶ Needs to implement the tests "manually".

Unit tests?

- ▶ Needs to implement the tests "manually".
- Risk of forgetting important cases.

Unit tests?

- ▶ Needs to implement the tests "manually".
- ► Risk of forgetting important cases.
- Impossible to test everything.

Unit tests?

- ▶ Needs to implement the tests "manually".
- ► Risk of forgetting important cases.
- ► Impossible to test everything.
- \hookrightarrow Does not prove the system is correct.

Unit tests?

- ▶ Needs to implement the tests "manually".
- ► Risk of forgetting important cases.
- ► Impossible to test everything.
- \hookrightarrow Does not prove the system is correct.

We will rely on formal methods.

Unit tests?

- ▶ Needs to implement the tests "manually".
- ► Risk of forgetting important cases.
- ► Impossible to test everything.
- \hookrightarrow Does **not** prove the system is correct.

We will rely on formal methods.

Idea:

- ightharpoonup Construct a model \mathcal{M} of the system.
- \blacktriangleright Verify if $\mathcal M$ satisfies the desired properties, over all possible executions.

Unit tests?

- ▶ Needs to implement the tests "manually".
- ► Risk of forgetting important cases.
- ► Impossible to test everything.
- \hookrightarrow Does **not** prove the system is correct.

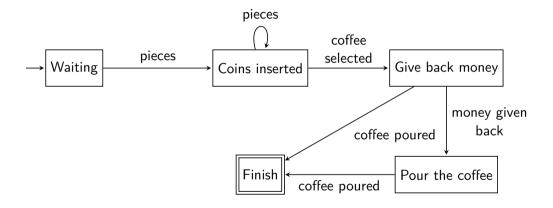
We will rely on formal methods.

Idea:

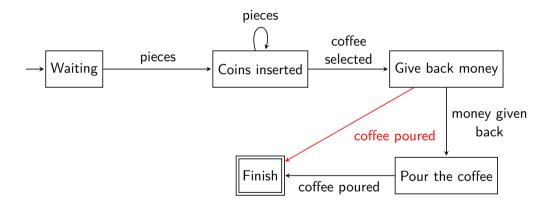
- ightharpoonup Construct a model \mathcal{M} of the system.
- \blacktriangleright Verify if $\mathcal M$ satisfies the desired properties, over all possible executions.

Here, we focus on the construction of the model.

A model for the coffee machine



A model for the coffee machine



An alphabet, noted Σ , is a finite and non-empty set of symbols.

Example 1

 $\Sigma = \{a, b\}$ is an alphabet.

An alphabet, noted Σ , is a finite and non-empty set of symbols.

A word $w = a_1 a_2 \dots a_n$ $(n \in \mathbb{N})$ over an alphabet Σ is a finite sequence of symbols, $a_i \in \Sigma$. The empty word is denoted by ε .

Example 1

 $\Sigma = \{a, b\}$ is an alphabet.

w = ababb is a word over Σ .

An alphabet, noted Σ , is a finite and non-empty set of symbols.

A word $w = a_1 a_2 \dots a_n$ $(n \in \mathbb{N})$ over an alphabet Σ is a finite sequence of symbols, $a_i \in \Sigma$. The empty word is denoted by ε .

A language L over an alphabet Σ is a set of words.

Example 1

 $\Sigma = \{a, b\}$ is an alphabet.

w = ababb is a word over Σ .

 $L' = \{\varepsilon, a, b\}$ and $L = \{w \mid w \text{ has an even number of } a \text{ and an odd number of } b\}$ are two languages over Σ .

A deterministic finite automaton (DFA) is a tuple $\mathcal{A}=(Q,\Sigma,\delta,q_0,F)$ where

 $ightharpoonup \Sigma$ an alphabet;

- $ightharpoonup \Sigma$ an alphabet;
- Q a finite set of states;

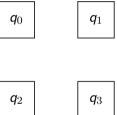


Figure 1: A DFA A.

- \triangleright Σ an alphabet;
- Q a finite set of states;
- ▶ $\delta: (Q \times \Sigma) \to Q$ a transition function;

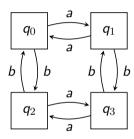


Figure 1: A DFA \mathcal{A} .

- $ightharpoonup \Sigma$ an alphabet;
- Q a finite set of states;
- ▶ $\delta: (Q \times \Sigma) \to Q$ a transition function;
- $ightharpoonup q_0 \in Q$ the initial state;

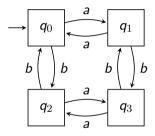


Figure 1: A DFA \mathcal{A} .

- $ightharpoonup \Sigma$ an alphabet;
- Q a finite set of states;
- ▶ $\delta: (Q \times \Sigma) \to Q$ a transition function;
- $ightharpoonup q_0 \in Q$ the initial state;
- $ightharpoonup F \subset Q$ the set of final states.

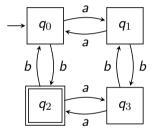


Figure 1: A DFA \mathcal{A} .

Let $w = a_1 a_2 \dots, a_n \in \Sigma^*$. The run of \mathcal{A} over w is the sequence of states

$$p_1 \xrightarrow{a_1} p_2 \xrightarrow{a_2} p_3 \xrightarrow{a_3} \dots \xrightarrow{a_n} p_{n+1}$$

such that $p_1 = q_0$ and $\forall i, \delta(p_i, a_i) = p_{i+1}$.

Example 2

Let w = ababb. The corresponding run is

$$q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_3 \xrightarrow{a} q_2 \xrightarrow{b} q_0 \xrightarrow{b} q_2.$$

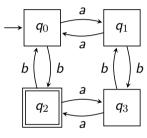


Figure 1: A DFA \mathcal{A} .

Let $w = a_1 a_2 \dots, a_n \in \Sigma^*$. The run of \mathcal{A} over w is the sequence of states

$$p_1 \xrightarrow{a_1} p_2 \xrightarrow{a_2} p_3 \xrightarrow{a_3} \dots \xrightarrow{a_n} p_{n+1}$$

such that $p_1 = q_0$ and $\forall i, \delta(p_i, a_i) = p_{i+1}$. If $p_{n+1} \in F$, then w is accepted by A.

Example 2

Let w = ababb. The corresponding run is

$$q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_3 \xrightarrow{a} q_2 \xrightarrow{b} q_0 \xrightarrow{b} q_2$$

and w is accepted by A.

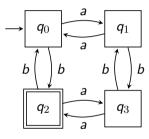


Figure 1: A DFA \mathcal{A} .

The language of A is the set of all accepted words, i.e.,

$$\mathcal{L}(\mathcal{A}) = \{ w \mid \exists p \in F, q_0 \xrightarrow{w} p \}.$$

Example 3

The language of ${\cal A}$ is

 $\mathcal{L}(\mathcal{A}) = \{ w \mid w \text{ has an even number of } a \text{ and } an \text{ odd number of } b \}.$

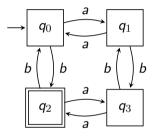


Figure 1: A DFA \mathcal{A} .

Let $L = \{ w \mid w \text{ has an even number of } a \text{ and an odd number of } b \}$.

Let $u \in \Sigma^*$. For all $w \in \Sigma^*$, we check whether $uw \in L$.

We construct a table where the rows are the u and the columns the w.

Let $L = \{w \mid w \text{ has an even number of } a \text{ and an odd number of } b\}$.

	ε	а	b	aa	ab	ba	bb	
ε	0	0	1	0	0	0	0	
a	0	0	0	0	1	1	0	
Ь	1	0	0	1	0	0	1	
aa	0	0	1	0	0	0	0	
ab	0	1	0	0	0	0	0	
ba	0	1	0	0	0	0	0	
:	:	:	÷	:	:	÷	:	٠.

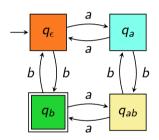
Let $L = \{w \mid w \text{ has an even number of } a \text{ and an odd number of } b\}$.

	ε	а	b	aa	ab	ba	bb	
ε	0	0	1	0	0	0	0	
а	0	0	0	0	1	1	0	
Ь	1	0	0	1	0	0	1	
aa	0	0	1	0	0	0	0	
ab	0	1	0	0	0	0	0	
ba	0	1	0	0	0	0	0	
:	÷	÷	÷	:	:	:	:	٠.

The table contains in fact four different rows.

Let $L = \{w \mid w \text{ has an even number of } a \text{ and an odd number of } b\}$.

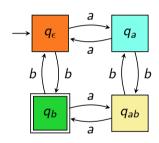
	ε	а	b	aa	ab	ba	bb	
ε	0	0	1	0	0	0	0	
а	0	0	0	0	1	1	0	
b	1	0	0	1	0	0	1	
aa	0	0	1	0	0	0	0	
ab	0	1	0	0	0	0	0	
ba	0	1	0	0	0	0	0	
÷	÷	÷	÷	÷	÷	÷	÷	٠



The table contains in fact four different rows.

Let $L = \{w \mid w \text{ has an even number of } a \text{ and an odd number of } b\}$.

	ε	а	Ь	aa	ab	ba	bb	
ε	0	0	1	0	0	0	0	
а	0	0	0	0	1	1	0	
b	1	0	0	1	0	0	1	
aa	0	0	1	0	0	0	0	
ab	0	1	0	0	0	0	0	
ba	0	1	0	0	0	0	0	
÷	i	÷	÷	:	:	i	:	٠



The table contains in fact four different rows.

 \hookrightarrow A finite table is enough.

How to learn a table?

Figure 2: Angluin's framework.¹

G. Staquet Constructing a model Verification by state machines

¹Angluin, "Learning Regular Sets from Queries and Counterexamples", 1987.

How to learn a table?

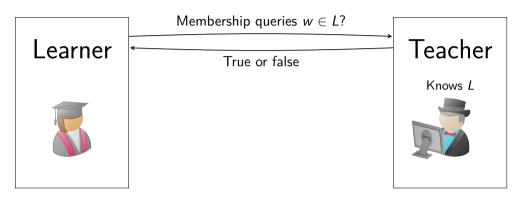


Figure 2: Angluin's framework.¹

G. Staquet Constructing a model Verification by state machines

¹Angluin, "Learning Regular Sets from Queries and Counterexamples", 1987.

How to learn a table?

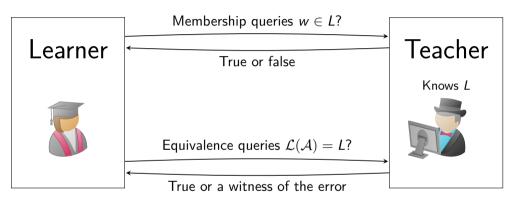


Figure 2: Angluin's framework.¹

G. Staquet Constructing a model Verification by state machines

¹Angluin, "Learning Regular Sets from Queries and Counterexamples", 1987.

How does the teacher work, in practical cases?

▶ Membership queries: execute the system on w and provide the answer.

- Membership queries: execute the system on w and provide the answer.
- ► Equivalence gueries:
 - If we can manipulate the system as a black box, then we can approximate the equivalence queries.

- ▶ Membership queries: execute the system on w and provide the answer.
- ► Equivalence queries:
 - ► If we can manipulate the system as a black box, then we can approximate the equivalence queries.
 - ► If we know how the system behaves (white box), then the equivalence queries can be more precise.

- Membership gueries: execute the system on w and provide the answer.
- Equivalence queries:
 - If we can manipulate the system as a black box, then we can approximate the equivalence queries.
 - If we know how the system behaves (white box), then the equivalence queries can be more precise.
 - ► We can mix both approaches (grey box).

- ▶ Membership queries: execute the system on w and provide the answer.
- ► Equivalence queries:
 - ► If we can manipulate the system as a black box, then we can approximate the equivalence queries.
 - ► If we know how the system behaves (white box), then the equivalence queries can be more precise.
 - ► We can mix both approaches (grey box).
- \hookrightarrow It depends on the exact problem.

```
{
  "title": "Verification by state machines",
  "place": {
     "town": "Mons",
     "country": "Belgium"
  },
  "date": [15, 11, 2022]
}
```

```
"title": "Verification by state machines",
  "place": {
    "town": "Mons",
    "country": "Belgium"
},
    "date": [15, 11, 2022]
```

We want to verify that the document satisfies some constraints.

```
{ "title": "Verification by state machines", "place": { "place": \# \text{Mons}", "country": "Belgium" "town" \# \text{Mons}", "country": \# \text{Mons}", "date": \# \text{Mons}" "array of integers
```

We want to verify that the document satisfies some constraints.

```
{
    "title": "Verification by state machines",
    "place": {
        "town": "Mons",
        "country": "Belgium"
    },
    "date": [15, 11, 2022]
}

"title" → string of characters

"place" → object such that

"town" → string of characters

"country" → string of characters

"date" → array of integers
```

We want to verify that the document satisfies some constraints.

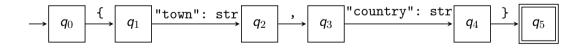


Figure 3: An automaton for the value of "place".

An object is a non-ordered collection of key-value paires.

G. Staquet JSON Documents Verification by state machines

^aBruyère, Pérez, and Staquet, Validating JSON Documents with Learned VPAs, 2022.

```
{
    "title": "Verification by state machines",
    "place": {
        "town": "Mons",
        "country": "Belgium"
    },
    "date": [15, 11, 2022]
}

"title" → string of characters

"place" → object such that
    "town" → string of characters

"country" → string of characters

"date" → array of integers
```

- An object is a non-ordered collection of key-value paires.
- An array is an ordered collection of values.

```
{
    "title": "Verification by state machines",
    "place": {
        "town": "Mons",
        "country": "Belgium"
    },
    "date": [15, 11, 2022]
}

"title" → string of characters

"place" → object such that
    "town" → string of characters

"country" → string of characters

"date" → array of integers
```

- An object is a non-ordered collection of key-value paires.
- An array is an ordered collection of values.

Our approach^a:

^aBruyère, Pérez, and Staquet, Validating JSON Documents with Learned VPAs, 2022.

```
{
    "title": "Verification by state machines",
    "place": {
        "town": "Mons",
        "country": "Belgium"
    },
        "date": [15, 11, 2022]
}

"title" → string of characters

"place" → object such that
    "town" → string of characters

"country" → string of characters

"date" → array of integers
```

- An object is a non-ordered collection of key-value paires.
- An array is an ordered collection of values.

Our approach^a:

 \blacktriangleright We learn an automaton \mathcal{A} with a fixed order on the keys.

G. Staquet JSON Documents Verification by state machines

^aBruyère, Pérez, and Staquet, Validating JSON Documents with Learned VPAs, 2022.

```
{
    "title": "Verification by state machines",
    "place": {
        "town": "Mons",
        "country": "Belgium"
    },
    "date": [15, 11, 2022]
}

"title" → string of characters

"place" → object such that
    "town" → string of characters

"country" → string of characters

"date" → array of integers
```

- An object is a non-ordered collection of key-value paires.
- An array is an ordered collection of values.

Our approach^a:

- \blacktriangleright We learn an automaton \mathcal{A} with a fixed order on the keys.
- ightharpoonup We abstract \mathcal{A} to allow any order.

G. Staquet JSON Documents Verification by state machines

^aBruyère, Pérez, and Staquet, Validating JSON Documents with Learned VPAs, 2022.

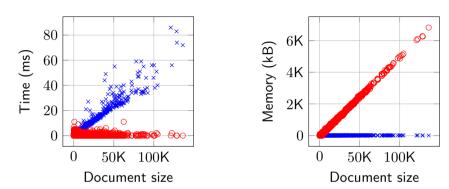


Figure 4: Experimental results for our JSON documents validation algorithm. Blue crosses given the values for our algorithm, and the red circles for the "classical" algorithm.

References I

- Angluin, Dana. "Learning Regular Sets from Queries and Counterexamples". In: *Inf. Comput.* 75.2 (1987), pp. 87–106. DOI: 10.1016/0890-5401(87)90052-6. URL: https://doi.org/10.1016/0890-5401(87)90052-6.
- Bruyère, V., G. A. Pérez, and G. Staquet. *Validating JSON Documents with Learned VPAs.* Pre-print. Soumis à TACAS 2023. F.R.S.-FNRS, Universités de Mons et d'Anvers, 2022.