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I An object is an unordered collection of key-value pairs.

I An array is an ordered collection of values.
Here, let us fix an order on the keys inside an object. That is, we
can assume objects are ordered.
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How to know whether a JSON document satisfies a given set of
constraints?

↪→ Automata-based verificationa.

What kind of automata can be used? How to construct such an
automaton?

↪→ Realtime one-counter automata (ROCA) and our learning
algorithm!

aFor XML documents, see Chitic and Rosu, “On Validation of XML Streams
Using Finite State Machines”, 2004
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Overview:
I Based on learning algorithm for visibly one-counter automata

(VCA).1

I For VCAs, we deduce the counter value from the word itself.
I For ROCAs, we need an automaton.

I We showed similarity between ROCAs and VCAs.

I VCA’s algorithm is used as a sort of sub-routine.

I We extend data structure to take into account the counter
value.

I Some values are unknown and left as wildcards.
I Obtaining an hypothesis is harder than for VCAs.

1Neider and Löding, Learning visibly one-counter automata in polynomial
time, 2010.
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A deterministic finite automaton (DFA) is a
tuple A = (Q,Σ, δ, q0,F ) where:
I Σ is the alphabet,

I Q is the set of states,
I δ : Q × Σ → Q is the transition

function.
I q0 ∈ Q is the initial state,
I F ⊆ Q is the set of accepting states,

and

q0 q1

q2 q3

a

b
a

b
a

b

a

b

Figure 1: A DFA A.
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The run for the word w = a1 . . . an ∈ Σ∗

(n ∈ N) is the sequence of states

p1
a1−→
A

p2
a2−→
A

. . .
an−→
A

pn+1

such that p1 = q0 and ∀i , δ(pi , ai) = pi+1.

If pn+1 ∈ F , the run is said accepting.

Example 1
Soit w = ababb. Its run is

q0
a−→ q1

b−→ q3
a−→ q2

b−→ q0
b−→ q2.

and w is accepted by A.

q0 q1

q2 q3

a

b
a

b
a

b

a

b

Figure 1: A DFA A.
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The language of A is the set

L(A) = {w ∈ Σ∗ | ∃q ∈ F , q0
w−→
A

q}.

Example 2
The language of A is

L(A) = {w | w a an even number of a and
an odd number of b}.

q0 q1

q2 q3

a

b
a

b
a

b

a

b

Figure 1: A DFA A.
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Let L ⊆ Σ∗.
We want an algorithm to learn a DFA accepting L.

↪→ active︸ ︷︷ ︸

queries
information

learning algorithm.
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Learner Teacher
Knows L

Membership query w ∈ L?

true or false

Equivalence query L(H) = L?

true or a counterexample

Figure 2: Angluin’s framework Angluin, “Learning Regular Sets from
Queries and Counterexamples”, 1987
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Let L = {w ∈ {a, b}∗ |
w has an even number of a and an odd number of b}.
Let u ∈ Σ∗. For all w ∈ Σ∗, we look if uw ∈ L.
We construct a table where the rows are indexed by the u and the
columns by the w .

qε qa

qb qab

a

b
a

b
a

b

a

b
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Let L = {w ∈ {a, b}∗ |
w has an even number of a and an odd number of b}.

ε a b aa ab ba . . .

ε 0 0 1 0 0 0 . . .
a 0 0 0 0 1 1 . . .
b 1 0 0 1 0 0 . . .
aa 0 0 1 0 0 0 . . .
ab 0 1 0 0 0 0 . . .
ba 0 1 0 0 0 0 . . .
...

...
...

...
...

...
... . . .

qε qa

qb qab

a

b
a

b
a

b

a

b
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Let u, v ∈ Σ∗ and L ⊆ Σ∗. We say that u ∼ v if and only ifa

∀w ∈ Σ∗, uw ∈ L ⇔ vw ∈ L.

aHopcroft and Ullman, Introduction to Automata Theory, Languages and
Computation, 2000.
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Proposition 3
Let L be a language over Σ. Then, there is a DFA accepting L if
and only if the index of ∼ is finite.
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The Myhill-Nerode congruence of this table has a finite index.

V. Bruyère, G. A. Pérez, G. Staquet DFA Learning — Active learning Learning ROCAs 12 / 33



Motivation DFA Learning Learning ROCA Experimental results References

Let L = {w ∈ {a, b}∗ |
w has an even number of a and an odd number of b}.

ε a b aa ab ba . . .

ε 0 0 1 0 0 0 . . .
a 0 0 0 0 1 1 . . .
b 1 0 0 1 0 0 . . .
aa 0 0 1 0 0 0 . . .
ab 0 1 0 0 0 0 . . .
ba 0 1 0 0 0 0 . . .
...

...
...

...
...

...
... . . .

qε qa

qb qab

a

b
a

b
a

b

a

b

The Myhill-Nerode congruence of this table has a finite index.

V. Bruyère, G. A. Pérez, G. Staquet DFA Learning — Active learning Learning ROCAs 12 / 33



Motivation DFA Learning Learning ROCA Experimental results References

An observation table2 is a tuple O = (R ,S,L) where:
I R ⊆ Σ∗ is a prefix-closed set of representatives (the lines),
I S ⊆ Σ∗ is a suffix-closed set of separators (the columns),
I L : (R ∪ RΣ)S → {1, 0} is such that

∀u ∈ R ∪ RΣ, s ∈ S,L(us) = 1 ⇔ us ∈ L.

Let u, v ∈ R ∪ RΣ. We say that u ∼O v if and only if

∀s ∈ S,L(us) = L(vs).

The goal is to have a sufficient large finite subset of the infinite
table from before.
More precisely, we refine ∼O until it coincides with ∼.

2Angluin, “Learning Regular Sets from Queries and Counterexamples”, 1987.
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Let L = {w ∈ {a, b}∗ |
w has an even number of a and an odd number of b}.

ε

ε 0
a 0
b 1

V. Bruyère, G. A. Pérez, G. Staquet DFA Learning — Observation table Learning ROCAs 14 / 33



Motivation DFA Learning Learning ROCA Experimental results References

Let L = {w ∈ {a, b}∗ |
w has an even number of a and an odd number of b}.

ε

ε 0
a 0
b 1

An observation table is closed if

∀u ∈ RΣ, ∃v ∈ R , u ∼O v .

If unclosed due to u ∈ RΣ, add u to R .
Here, unclosed due to b.
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qε

qb

a

ba, b

Counterexample: ab.
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Let L = {w ∈ {a, b}∗ |
w has an even number of a and an odd number of b}.
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An observation table is Σ-consistent if

∀u, v ∈ R , ∀a ∈ Σ, u ∼O v ⇒ ua ∼O va.

If Σ-inconsistent due to u ∼O v but
L(uaw) 6= L(vaw), add aw to S.
Here, ε ∼O ab but L(ε · a · ε) = 0 6=
L(ab · a · ε) = 1.
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Algorithm 1 Abstract learner for L∗ [Angluin, “Learning Regular
Sets from Queries and Counterexamples”, 1987]
Require: The target language L
Ensure: A DFA accepting L is returned

1: Initialize the observation table O
2: Fill O with membership queries
3: while true do
4: Make O closed and Σ-consistent
5: Construct the DFA A
6: Ask an equivalence query over A
7: if the answer is positive then
8: return A
9: else

10: Given the counterexample w , add Pref (w) to O
11: Fill O with membership queries
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1. Motivation

2. Learning deterministic finite automata

3. Learning realtime one-counter automata
Realtime one-counter automata
Behavior graph
Learning algorithm

4. Experimental results
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A realtime one-counter automaton
(ROCA) is a tuple
A = (Q,Σ, δ=0, δ>0, q0,F ) where
Q, q0, and F are defined as before,
and the transition functions δ=0 and
δ>0 are defined as:

δ=0 : Q × Σ → Q × {0,+1}
δ>0 : Q × Σ → Q × {−1, 0,+1}.

A configuration is a pair
(q, n) ∈ Q × N.

q0

q1

q2

a,= 0,+1

b,= 0, 0

a,= 0, 0

b,= 0, 0

a,= 0, 0
b,= 0, 0

a, 6= 0,+1

b, 6= 0, 0

a, 6= 0,−1

b, 6= 0, 0

a, 6= 0, 0
b, 6= 0, 0

Figure 3: An ROCA A.
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The transition relation
−→
A

⊆ (Q × N)× Σ× (Q × N)

contains (q, n) a−→
A

(p,m) iff

{
δ=0(q, a) = (p, c) ∧ m = n + c if n = 0

δ>0(q, a) = (p, c) ∧ m = n + c if n > 0.

Example 4

(q0, 0)
a−→
A

(q0, 1)
a−→
A

(q0, 2)

b−→
A

(q1, 2)
a−→
A

(q1, 1)
a−→
A

(q1, 0)
a−→
A

(q1, 0).

q0

q1

q2

a,= 0,+1

b,= 0, 0

a,= 0, 0

b,= 0, 0

a,= 0, 0
b,= 0, 0

a, 6= 0,+1

b, 6= 0, 0

a, 6= 0,−1

b, 6= 0, 0

a, 6= 0, 0
b, 6= 0, 0

Figure 4: An ROCA A.
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Let w ∈ Σ∗. The counter value of w ,
according to A, is n iff

∃q ∈ Q, (q0, 0)
w−→
A

(q, n).

Example 5

Since (q0, 0)
aabaaa−−−−→

A
(q1, 0),

cA(aabaaa) = 0.

q0

q1

q2

a,= 0,+1

b,= 0, 0

a,= 0, 0

b,= 0, 0

a,= 0, 0
b,= 0, 0

a, 6= 0,+1

b, 6= 0, 0

a, 6= 0,−1

b, 6= 0, 0

a, 6= 0, 0
b, 6= 0, 0

Figure 5: An ROCA A.
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For a word w , if we have

(q0, 0)
w−→
A

(q, 0)

with q ∈ F , then w ∈ L(A).

Example 6
L(A) = {anbam | 0 ≤ n ≤ m}.
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b,= 0, 0

a,= 0, 0

b,= 0, 0

a,= 0, 0
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a, 6= 0, 0
b, 6= 0, 0
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Let A be an ROCA accepting L.
Let u, v ∈ Σ∗. We say that u ≡ v iff

1. ∀w ∈ Σ∗, uw ∈ L ⇔ vw ∈ L,
and

2. ∀w ∈ Σ∗, uw , vw ∈ Pref (L) ⇒
cA(uw) = cA(vw).

Example 7
b ≡ aba but ab 6≡ aab.
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a,= 0, 0

b,= 0, 0

a,= 0, 0
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a, 6= 0, 0
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Figure 7: An ROCA A.
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Let A be an ROCA accepting L. Using the relation ≡, we can
construct an infinite deterministic automaton accepting L: the
behavior graph of A BG(A) = (Q≡,Σ, δ≡, q0

≡,F≡) with:
I Q≡ = {JuK≡ | u ∈ Pref (L)},
I q0

≡ = JεK≡,
I F≡ = {JuK≡ | u ∈ L}, and
I δ≡ : Q ×Σ → Q such that δ(JuK≡, a) = JuaK≡ with a ∈ Σ and

u, ua ∈ Pref (L).
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ε a aa aaa . . .

aba ab aab aaab . . .

cA = 0 cA = 1 cA = 2 cA = 3 . . .

a a

b

a

b

a

b

a a a a

a

Initial part Repeating part

Figure 8: The behavior graph of A.
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Theorem 8
Let A be an ROCA accepting L and BG(A) be its behavior graph.
Then, BG(A) is ultimately periodic.

Moreover, it is possible to construct an ROCA accepting L from
BG(A).
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Let A be an ROCA accepting L.

I Rough idea3: learn a sufficiently large initial fragment of
BG(A) and construct an ROCA from it.

I What is an initial fragment?
↪→ BG`(A) is a subgraph of BG(A) whose set of states is
{JuK≡ ∈ Q≡ | ∀x ∈ Pref (u), 0 ≤ cA(x) ≤ `}, with ` ∈ N. Let
L` = L(BG`(A)).

I How to construct an ROCA from BG`(A)?
↪→ Not the focus here but it is possible.

I How to learn BG`(A)?
↪→ BG`(A) is actually a DFA.

3Based on the algorithm for VCA [Neider and Löding, Learning visibly
one-counter automata in polynomial time, 2010].
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Learner Teacher
Knows A

Membership query w ∈ L(A)?

true or false

Counter value query for w

cA(w)

Partial equivalence query L(H) = L`?

true or a counterexample

Equivalence query L(H) = L(A)?

true or a counterexample

Figure 9: Adaptation of Angluin’s framework for ROCAs.
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Algorithm 2 Adaptation of L∗ for ROCAs.
Require: A teacher knowing an ROCA A
Ensure: An ROCA accepting the same language is returned

1: Initialize the data structure D` up to ` = 0
2: while true do
3: Make D` respect the needed constraints and construct AD`

4: Ask a partial equivalence query over AD`

5: if the answer is negative then
6: Update D` with the provided counterexample . ` is not

modified
7: else
8: Construct all the possible ROCAs A1, . . . ,An from AD`

9: Ask an equivalence query over each Ai
10: if the answer is true for an Ai then return Ai
11: else Select one counterexample and update D` . ` is

increased
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Let A be an ROCA accepting L ⊆ Σ∗.
An observation table up to ` is a tuple O` = (R , S, Ŝ,L`, C`) with:
I R ⊆ Σ∗ is the prefix-closed set of representatives,
I S ⊆ Ŝ ⊆ Σ∗ are two suffix-closed sets of separators,
I L` : (R ∪ RΣ)Ŝ → {0, 1}, and
I C` : (R ∪ RΣ)S → {0, . . . , `} ∪ {⊥}.

Let Pref (O`) = {w ∈ Pref (us) | u ∈ R ∪ RΣ, s ∈ Ŝ,L`(us) = 1}.
The following holds for all u ∈ R ∪ RΣ:
I ∀s ∈ Ŝ,L`(us) = 1 if and only if us ∈ L`.

I ∀s ∈ S, C`(us) =
{

cA(us) if us ∈ Pref (O`)

⊥ otherwise.
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Let L = {anbam | 0 ≤ n ≤ m}.
ε

ε 0, 0
a 0, 1
ab 0, 1
aba 1, 0

b 0,⊥
aa 0,⊥

abb 0,⊥
abaa 1, 0
abab 0,⊥

↪→ Getting the algorithm to eventually finish is harder than it looks.
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Rough idea:
I u and v are approximately equivalent if they are equal, up to ⊥.

I If u ≡ v , then u and v are approximately equivalent.
I Not a right-congruence.

I Adapt definitions of closedness and consistency to force
right-congruence.
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Theorem 9
Let A be an ROCA accepting a language L ⊆ Σ∗. Given a teacher
for L with an automaton A, and t the length of the longest
counterexample for (partial) equivalence queries:

I An ROCA accepting L can be computed in time and space
exponential in |A|, |Σ| and t.

I The learner asks:
I O(t3) partial equivalence queries
I O(|A|t2) equivalence queries
I An exponential number of membership (resp. counter value)

queries in |A|, |Σ|, and t.
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