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Many computer systems have timing constraints:
I Network protocols;
I Schedulers;
I Embedded systems;
I In general, real-time systems.

Well-known model for these systems: timed automata.

In short: finite automata augmented with clocks that can be reset or used in guards
along transitions and states.

BUT timed automata are hard to construct and understand.
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We focus on properties that can be represented with timers: automata with timers.

Timed automata Automata with timers

I

Clocks go from 0 to infinity;

I

Timers go from a value set by the transi-
tion to 0;

I

We know the current value of the clocks;

I

We do not know the current value of the
timers;

I

Timed automata are more expressive;

I

Automata with timers are more restrictive;

I

Learning (à la Angluin1) timed automata
is challenging;

I

Future work: learning algorithm;

I

Well-known model.

I

This work studies some properties of au-
tomata with timers.

1

Angluin, “Learning Regular Sets from Queries and Counterexamples”, 1987
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An automaton with timers (AT) is a
tuple A = (X, I,Q, q0, δ) where
I X is the set of timers,
I I is the set of actions,

I Q is the finite set of states,
I q0 ∈ Q is the initial state,
I δ is the transition function.

q0 q1

q2q3

i/x1 = 1

i/x2 = 2

to[x1]/x1 = 1

i/x1 = 1

to[x1]/⊥

to[x2]/⊥

i/x2 = 1

to[x2]/⊥

Figure 1: An AT.
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q0 q1

q2q3

i/x1 = 1

i/x2 = 2

to[x1]/x1 = 1

i/x1 = 1
to[x1]/⊥

to[x2]/⊥

i/x2 = 1

to[x2]/⊥

Figure 2: The same AT.

(q0, ∅)

1−→ (q0, ∅)
i−−→

x1,1
(q1, x1 = 1)

1−→ (q1, x1 = 0)
i−−→

x2,2
(q2, x1 = 0, x2 = 2)

0−→ (q2, x1 = 0, x2 = 2)
to[x1]−−−→
⊥

(q3, x2 = 2)
2−→ (q3, x2 = 0)

to[x2]−−−→
⊥

(q0, ∅)
0.5−−→ (q0, ∅).
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B1

B2

Figure 3: Block representation of the execution.

(q0, ∅)
1−→ (q0, ∅)

i−−→
x1,1

(q1, x1 = 1)
1−→ (q1, x1 = 0)

i−−→
x2,2

(q2, x1 = 0, x2 = 2)

0−→ (q2, x1 = 0, x2 = 2)
to[x1]−−−→
⊥

(q3, x2 = 2)
2−→ (q3, x2 = 0)

to[x2]−−−→
⊥

(q0, ∅)
0.5−−→ (q0, ∅).

We have concurrent actions.

Bruyère, Pérez, Staquet, Vaandrager Syntax and semantics Automata with Timers 6 / 18



B1

B2

Figure 3: Block representation of the execution.

(q0, ∅)
1−→ (q0, ∅)

i−−→
x1,1

(q1, x1 = 1)
1−→ (q1, x1 = 0)

i−−→
x2,2

(q2, x1 = 0, x2 = 2)

0−→ (q2, x1 = 0, x2 = 2)
to[x1]−−−→
⊥

(q3, x2 = 2)
2−→ (q3, x2 = 0)

to[x2]−−−→
⊥

(q0, ∅)
0.5−−→ (q0, ∅).

We have concurrent actions.

Bruyère, Pérez, Staquet, Vaandrager Syntax and semantics Automata with Timers 6 / 18



We can avoid this concurrency and still see the same sequence of actions.

B1

B2

1 1 0 2 0.5

B1

B2

1 0.5 0.5 1.5 1

Figure 4: Idea: wiggle delays between actions.

Is it always possible?
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0.5−−→ (q1, x1 = 0.5).
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B3
B1

Figure 6: Block representation of the timed run.
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B1

B2

(a) Can be avoided.

B2

B3
B1
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Can we characterize when it is possible to remove the concurrency?
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We studied two problems.

Theorem 1 (Contribution)
Fix an automaton and a state q. Deciding whether there exists an execution of the
automaton that reaches q is PSPACE-complete.

I Hardness: reduction from Linear Bounded Turing Machine.
I Membership: region automaton.

Theorem 2 (Contribution)
Deciding whether an AT contains an execution in which some concurrency cannot be
avoided is PSPACE-hard and in 3EXP.
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B1

B2

(a) Can be wiggled.

B1

B2

(b) Can be wiggled.

B2

B3
B1

(c) Cannot be wiggled.

B2

B3
B1

(d) Can be wiggled.

Figure 8: Not all runs can be wiggled.
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B1

B2

(a) B2 ≺ B1.

B1

B2

(b) B1 ≺ B2.

B2

B3
B1

(c) B1 ≺ B2, B3 ≺ B1, B2 ≺ B3.

B2

B3
B1

(d) B1 ≺ B2.

Figure 9: Define an order ≺ over the blocks, based on races.
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B1B2 B1 B2

B1 B2

B3 B1 B2

Figure 10: Block graphs defined from the blocks and ≺.
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Proposition 3 (Contribution)
A timed run ρ can be wiggled if and only if its block graph is acyclic.

⇒ By contraposition, we have a cycle.
If a block has…
I A predecessor? It cannot move

left.
I A successor? It cannot move right.
I Both? It cannot move at all.

Thus, ρ cannot be wiggled since we have
a cycle.

B2

B3
B1

B1 B2

B3

Figure 11: We have a cycle.
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Proposition 3 (Contribution)
A timed run ρ can be wiggled if and only if its block graph is acyclic.

B1

B2

B1B2

B1

B2

Figure 12: We change delays.

⇐ The graph is acyclic. Compute its
topological sort and move the “last”
block to the right.
↪→ obtain ρ′ with the same sequence of
actions as ρ but ρ′ contains strictly less
races.
Repeat until all races are removed.
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Theorem 4 (Contribution)
An AT contains a run that cannot be wiggled if and only if the block graph of that run
is cyclic.

This can be encoded in an MSO formula that is satisfied if

I there exists a run of the region automaton

that cannot be wiggled,

I i.e., there are concurrent actions

inducing a cyclic block graph.

Let us illustrate using our run with unavoidable concurrencies.
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q0 q1

q2q3

i/x1 = 1

i/x2 = 2

to[x1]/x1 = 1

i/x1 = 1
to[x1]/⊥

to[x2]/⊥

i/x2 = 1

to[x2]/⊥ B1

B2

B3

(q0, ∅, ∅)
τ−→ (q0, ∅, ∅)

(i,x1)−−−→ (q1, x1 = 1, ∅) (i,x2)−−−→ (q2, x1 = 1 ∧ x2 = 2, ∅)
τ−→ (q2, 0 < x1 < 1 ∧ x2 − x1 = 1, ∅) τ−→ (q2, x1 = 0 ∧ x2 = 1, ∅)
(i,x1)−−−→ (q2, x1 = 1 = x2, {x1})

di[x1]−−−→ (q2, x1 = 1 = x2, ∅)
τ−→ (q2, 0 < x1 = x2 < 1, ∅) τ−→ (q2, x1 = 0 = x2, ∅)
(to[x2],⊥)−−−−−−→ (q1, x1 = 0, ∅) (to[x1],x1)−−−−−−→ (q1, x1 = 1, ∅) τ−→ (q1, 0 < x1 < 1, ∅)
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We need to express the following:
I Two symbols are in concurrency iff there is no τ in between.
I Two symbols are in the same block iff there is no transition using the timer of the

block.
I There exists a cycle in the block graph.

The formula can be written with three quantifiers alternations ; 3EXP.
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Theorem 5 (Contribution)
Fix an automaton and a state q. Deciding whether there exists an execution of the
automaton that reaches q is PSPACE-complete.

Theorem 6 (Contribution)
Deciding whether an AT contains an execution in which some concurrency cannot be
avoided is PSPACE-hard and in 3EXP.

Thank you!
For all details, see Bruyère et al., “Automata with Timers”, 2023.
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Figure 15: The beginning of a run for the reachability PSPACE-hardness proof.
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Let A = (X, I,Q, q0, χ, δ) be an automaton with timers. For a timer x ∈ X, cx denotes
the largest constant to which x is updated in A. Let C = maxx∈X cx.
Two valuations κ and κ′ are said timer-equivalent, noted κ ∼= κ′, iff dom(κ) = dom(κ′)
and the following hold for all x1, x2 ∈ dom(κ):
I bκ(x1)c = bκ′(x1)c,
I frac(κ(x1)) = 0 iff frac(κ′(x1)) = 0,
I frac(κ(x1)) ≤ frac(κ(x2)) iff frac(κ′(x1)) ≤ frac(κ′(x2)).
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A timer region for A is an equivalence class of timer valuations induced by ∼=. We lift
the relation to configurations: (q, κ) ∼= (q′, κ′) iff κ ∼= κ′ and q = q′. Finally, J(q, κ)K∼=
denotes the equivalence class of (q, κ).
We are now able to define a finite automaton called the region automaton of A and
denoted R. The alphabet of R is Σ = {τ} ∪ Î where τ is a special symbol used in
non-zero delay transitions. Formally, R is the finite automaton (Σ, S, s0,∆) where:
I S = {(q, κ) | q ∈ Q,κ ∈ Val(χ(q))}/∼=, i.e., the quotient of the configurations by

∼=, is the set of states,
I s0 = (q0, Jκ0K∼=) with κ0 the empty valuation, is the initial state,
I the set of transitions ∆ ⊆ S × Σ× S includes (J(q, κ)K∼=, τ, J(q, κ′)K∼=) if

(q, κ)
d−→ (q, κ′) in A whenever d > 0, and (J(q, κ)K∼=, i, J(q′, κ′)K∼=) if

(q, κ)
i−→
u

(q′, κ′) in A.
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Lemma 7
Let A = (X, I,Q, q0, χ, δ) be an automaton with timers and R be its region automaton.

1. The size of R is linear in |Q| and exponential in |X|. That is, |S| is smaller than or
equal to |Q| · |X|! · 2|X| · (C + 1)|X|.

2. There is a timed run ρ of A that begins in (q, κ) and ends in (q′, κ′) iff there is a
run ρ′ of R that begins in J(q, κ)K∼= and ends in J(q′, κ′)K∼=.
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Corollary 8
Let A be an automaton with timers and ρ ∈ ptruns(A) be a padded timed run with
races. Suppose that Gρ is cyclic. Then there exists a cycle C in Gρ such that
I any block of C participates in exactly two races described by this cycle,
I for any race described by C, exactly two blocks of C participate in the race,
I the blocks B = (k1 . . . km, γ) of C satisfy either m ≥ 2, or m = 1 and γ =  .
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