
Automata with Timers
To be published at FORMATS 2023

Véronique Bruyère, Guillermo A. Pérez, Gaëtan Staquet, Frits W. Vaandrager

Theoretical computer science Formal Techniques in Software Engineering
Computer Science Department Computer Science Department

Science Faculty Science Faculty
University of Mons University of Antwerp

July 25, 2023



Many computer systems have timing constraints:
I Network protocols;
I Schedulers;
I Embedded systems;
I In general, real-time systems.

Well-known model for these systems: timed automata.1

In short: finite automata augmented with clocks that can be reset or used in guards
along transitions and states.

BUT timed automata are hard to construct and understand.

1

Baier and Katoen, Principles of model checking, 2008; Clarke et al., Handbook of Model Checking,
2018

Bruyère, Pérez, Staquet, Vaandrager Motivation: timed systems Automata with Timers 2 / 10



Many computer systems have timing constraints:
I Network protocols;
I Schedulers;
I Embedded systems;
I In general, real-time systems.

Well-known model for these systems: timed automata.1

In short: finite automata augmented with clocks that can be reset or used in guards
along transitions and states.

BUT timed automata are hard to construct and understand.

1Baier and Katoen, Principles of model checking, 2008; Clarke et al., Handbook of Model Checking,
2018

Bruyère, Pérez, Staquet, Vaandrager Motivation: timed systems Automata with Timers 2 / 10



Many computer systems have timing constraints:
I Network protocols;
I Schedulers;
I Embedded systems;
I In general, real-time systems.

Well-known model for these systems: timed automata.1

In short: finite automata augmented with clocks that can be reset or used in guards
along transitions and states.

BUT timed automata are hard to construct and understand.

1Baier and Katoen, Principles of model checking, 2008; Clarke et al., Handbook of Model Checking,
2018

Bruyère, Pérez, Staquet, Vaandrager Motivation: timed systems Automata with Timers 2 / 10



Many computer systems have timing constraints:
I Network protocols;
I Schedulers;
I Embedded systems;
I In general, real-time systems.

Well-known model for these systems: timed automata.1

In short: finite automata augmented with clocks that can be reset or used in guards
along transitions and states.

BUT timed automata are hard to construct and understand.

1Baier and Katoen, Principles of model checking, 2008; Clarke et al., Handbook of Model Checking,
2018

Bruyère, Pérez, Staquet, Vaandrager Motivation: timed systems Automata with Timers 2 / 10



We focus on properties that can be represented with timers: automata with timers.

Timed automata Automata with timers

I

Clocks go from 0 to infinity;

I

Timers go from a value set by the transi-
tion to 0;

I

We know the current value of the clocks;

I

We do not know the current value of the
timers;

I

Timed automata are more expressive;

I

Automata with timers are more restrictive;

I

Learning (à la Angluin2) timed automata
is challenging;

I

Future work: learning algorithm;

I

Well-known model.

I

This work studies some properties of au-
tomata with timers.

2

Angluin, “Learning Regular Sets from Queries and Counterexamples”, 1987

Bruyère, Pérez, Staquet, Vaandrager Motivation: timed systems Automata with Timers 3 / 10



We focus on properties that can be represented with timers: automata with timers.

Timed automata Automata with timers

I Clocks go from 0 to infinity; I Timers go from a value set by the transi-
tion to 0;

I

We know the current value of the clocks;

I

We do not know the current value of the
timers;

I

Timed automata are more expressive;

I

Automata with timers are more restrictive;

I

Learning (à la Angluin2) timed automata
is challenging;

I

Future work: learning algorithm;

I

Well-known model.

I

This work studies some properties of au-
tomata with timers.

2

Angluin, “Learning Regular Sets from Queries and Counterexamples”, 1987

Bruyère, Pérez, Staquet, Vaandrager Motivation: timed systems Automata with Timers 3 / 10



We focus on properties that can be represented with timers: automata with timers.

Timed automata Automata with timers

I Clocks go from 0 to infinity; I Timers go from a value set by the transi-
tion to 0;

I We know the current value of the clocks; I We do not know the current value of the
timers;

I

Timed automata are more expressive;

I

Automata with timers are more restrictive;

I

Learning (à la Angluin2) timed automata
is challenging;

I

Future work: learning algorithm;

I

Well-known model.

I

This work studies some properties of au-
tomata with timers.

2

Angluin, “Learning Regular Sets from Queries and Counterexamples”, 1987

Bruyère, Pérez, Staquet, Vaandrager Motivation: timed systems Automata with Timers 3 / 10



We focus on properties that can be represented with timers: automata with timers.

Timed automata Automata with timers

I Clocks go from 0 to infinity; I Timers go from a value set by the transi-
tion to 0;

I We know the current value of the clocks; I We do not know the current value of the
timers;

I Timed automata are more expressive; I Automata with timers are more restrictive;

I

Learning (à la Angluin2) timed automata
is challenging;

I

Future work: learning algorithm;

I

Well-known model.

I

This work studies some properties of au-
tomata with timers.

2

Angluin, “Learning Regular Sets from Queries and Counterexamples”, 1987

Bruyère, Pérez, Staquet, Vaandrager Motivation: timed systems Automata with Timers 3 / 10



We focus on properties that can be represented with timers: automata with timers.

Timed automata Automata with timers

I Clocks go from 0 to infinity; I Timers go from a value set by the transi-
tion to 0;

I We know the current value of the clocks; I We do not know the current value of the
timers;

I Timed automata are more expressive; I Automata with timers are more restrictive;

I Learning (à la Angluin2) timed automata
is challenging;

I Future work: learning algorithm;

I

Well-known model.

I

This work studies some properties of au-
tomata with timers.

2Angluin, “Learning Regular Sets from Queries and Counterexamples”, 1987
Bruyère, Pérez, Staquet, Vaandrager Motivation: timed systems Automata with Timers 3 / 10



We focus on properties that can be represented with timers: automata with timers.

Timed automata Automata with timers

I Clocks go from 0 to infinity; I Timers go from a value set by the transi-
tion to 0;

I We know the current value of the clocks; I We do not know the current value of the
timers;

I Timed automata are more expressive; I Automata with timers are more restrictive;

I Learning (à la Angluin2) timed automata
is challenging;

I Future work: learning algorithm;

I Well-known model. I This work studies some properties of au-
tomata with timers.

2Angluin, “Learning Regular Sets from Queries and Counterexamples”, 1987
Bruyère, Pérez, Staquet, Vaandrager Motivation: timed systems Automata with Timers 3 / 10



An automaton with timers (AT) is a
tuple A = (X, I,Q, q0, χ, δ) where
I X is the set of timers,
I I is the set of actions,

I Q is the finite set of states,
I q0 ∈ Q is the initial state,
I χ : Q → P(X) gives the active

timers of each state,
I δ is the transition function.

q0 q1

q2q3

i → (x1, 1)

i → (x2, 2)

to[x1] → (x1, 1)

i → (x1, 1)

to[x1] → ⊥

to[x2] → ⊥

i → (x2, 1)

to[x2] → ⊥

Figure 1: An AT.

Bruyère, Pérez, Staquet, Vaandrager Syntax and semantics Automata with Timers 4 / 10



An automaton with timers (AT) is a
tuple A = (X, I,Q, q0, χ, δ) where
I X is the set of timers,
I I is the set of actions,
I Q is the finite set of states,
I q0 ∈ Q is the initial state,

I χ : Q → P(X) gives the active
timers of each state,

I δ is the transition function.

q0 q1

q2q3

i → (x1, 1)

i → (x2, 2)

to[x1] → (x1, 1)

i → (x1, 1)

to[x1] → ⊥

to[x2] → ⊥

i → (x2, 1)

to[x2] → ⊥

Figure 1: An AT.

Bruyère, Pérez, Staquet, Vaandrager Syntax and semantics Automata with Timers 4 / 10



An automaton with timers (AT) is a
tuple A = (X, I,Q, q0, χ, δ) where
I X is the set of timers,
I I is the set of actions,
I Q is the finite set of states,
I q0 ∈ Q is the initial state,
I χ : Q → P(X) gives the active

timers of each state,

I δ is the transition function.

q0 q1

q2q3

i → (x1, 1)

i → (x2, 2)

to[x1] → (x1, 1)

i → (x1, 1)

to[x1] → ⊥

to[x2] → ⊥

i → (x2, 1)

to[x2] → ⊥

Figure 1: An AT.

Bruyère, Pérez, Staquet, Vaandrager Syntax and semantics Automata with Timers 4 / 10



An automaton with timers (AT) is a
tuple A = (X, I,Q, q0, χ, δ) where
I X is the set of timers,
I I is the set of actions,
I Q is the finite set of states,
I q0 ∈ Q is the initial state,
I χ : Q → P(X) gives the active

timers of each state,
I δ is the transition function.

q0 q1

q2q3

i → (x1, 1)

i → (x2, 2)

to[x1] → (x1, 1)

i → (x1, 1)

to[x1] → ⊥

to[x2] → ⊥

i → (x2, 1)

to[x2] → ⊥

Figure 1: An AT.

Bruyère, Pérez, Staquet, Vaandrager Syntax and semantics Automata with Timers 4 / 10



q0 q1

q2q3

i → (x1, 1)

i → (x2, 2)

to[x1] → (x1, 1)

i → (x1, 1)
to[x1] → ⊥

to[x2] → ⊥

i → (x2, 1)

to[x2] → ⊥

Figure 2: The same AT.

(q0, ∅)

1−→ (q0, ∅)
i−−→

x1,1
(q1, x1 = 1)

1−→ (q1, x1 = 0)
i−−→

x2,2
(q2, x1 = 0, x2 = 2)

0−→ (q2, x1 = 0, x2 = 2)
to[x1]−−−→
⊥

(q3, x2 = 2)
2−→ (q3, x2 = 0)

to[x2]−−−→
⊥

(q0, ∅)
0.5−−→ (q0, ∅).

Bruyère, Pérez, Staquet, Vaandrager Syntax and semantics Automata with Timers 5 / 10



q0 q1

q2q3

i → (x1, 1)

i → (x2, 2)

to[x1] → (x1, 1)

i → (x1, 1)
to[x1] → ⊥

to[x2] → ⊥

i → (x2, 1)

to[x2] → ⊥

Figure 2: The same AT.

(q0, ∅)
1−→ (q0, ∅)

i−−→
x1,1

(q1, x1 = 1)
1−→ (q1, x1 = 0)

i−−→
x2,2

(q2, x1 = 0, x2 = 2)

0−→ (q2, x1 = 0, x2 = 2)
to[x1]−−−→
⊥

(q3, x2 = 2)
2−→ (q3, x2 = 0)

to[x2]−−−→
⊥

(q0, ∅)
0.5−−→ (q0, ∅).

Bruyère, Pérez, Staquet, Vaandrager Syntax and semantics Automata with Timers 5 / 10



q0 q1

q2q3

i → (x1, 1)

i → (x2, 2)

to[x1] → (x1, 1)

i → (x1, 1)
to[x1] → ⊥

to[x2] → ⊥

i → (x2, 1)

to[x2] → ⊥

Figure 2: The same AT.

(q0, ∅)
1−→ (q0, ∅)

i−−→
x1,1

(q1, x1 = 1)

1−→ (q1, x1 = 0)
i−−→

x2,2
(q2, x1 = 0, x2 = 2)

0−→ (q2, x1 = 0, x2 = 2)
to[x1]−−−→
⊥

(q3, x2 = 2)
2−→ (q3, x2 = 0)

to[x2]−−−→
⊥

(q0, ∅)
0.5−−→ (q0, ∅).

Bruyère, Pérez, Staquet, Vaandrager Syntax and semantics Automata with Timers 5 / 10



q0 q1

q2q3

i → (x1, 1)

i → (x2, 2)

to[x1] → (x1, 1)

i → (x1, 1)
to[x1] → ⊥

to[x2] → ⊥

i → (x2, 1)

to[x2] → ⊥

Figure 2: The same AT.

(q0, ∅)
1−→ (q0, ∅)

i−−→
x1,1

(q1, x1 = 1)
1−→ (q1, x1 = 0)

i−−→
x2,2

(q2, x1 = 0, x2 = 2)

0−→ (q2, x1 = 0, x2 = 2)
to[x1]−−−→
⊥

(q3, x2 = 2)
2−→ (q3, x2 = 0)

to[x2]−−−→
⊥

(q0, ∅)
0.5−−→ (q0, ∅).

Bruyère, Pérez, Staquet, Vaandrager Syntax and semantics Automata with Timers 5 / 10



q0 q1

q2q3

i → (x1, 1)

i → (x2, 2)

to[x1] → (x1, 1)

i → (x1, 1)
to[x1] → ⊥

to[x2] → ⊥

i → (x2, 1)

to[x2] → ⊥

Figure 2: The same AT.

(q0, ∅)
1−→ (q0, ∅)

i−−→
x1,1

(q1, x1 = 1)
1−→ (q1, x1 = 0)

i−−→
x2,2

(q2, x1 = 0, x2 = 2)

0−→ (q2, x1 = 0, x2 = 2)
to[x1]−−−→
⊥

(q3, x2 = 2)
2−→ (q3, x2 = 0)

to[x2]−−−→
⊥

(q0, ∅)
0.5−−→ (q0, ∅).

Bruyère, Pérez, Staquet, Vaandrager Syntax and semantics Automata with Timers 5 / 10



q0 q1

q2q3

i → (x1, 1)

i → (x2, 2)

to[x1] → (x1, 1)

i → (x1, 1)
to[x1] → ⊥

to[x2] → ⊥

i → (x2, 1)

to[x2] → ⊥

Figure 2: The same AT.

(q0, ∅)
1−→ (q0, ∅)

i−−→
x1,1

(q1, x1 = 1)
1−→ (q1, x1 = 0)

i−−→
x2,2

(q2, x1 = 0, x2 = 2)

0−→ (q2, x1 = 0, x2 = 2)
to[x1]−−−→
⊥

(q3, x2 = 2)

2−→ (q3, x2 = 0)
to[x2]−−−→
⊥

(q0, ∅)
0.5−−→ (q0, ∅).

Bruyère, Pérez, Staquet, Vaandrager Syntax and semantics Automata with Timers 5 / 10



q0 q1

q2q3

i → (x1, 1)

i → (x2, 2)

to[x1] → (x1, 1)

i → (x1, 1)
to[x1] → ⊥

to[x2] → ⊥

i → (x2, 1)

to[x2] → ⊥

Figure 2: The same AT.

(q0, ∅)
1−→ (q0, ∅)

i−−→
x1,1

(q1, x1 = 1)
1−→ (q1, x1 = 0)

i−−→
x2,2

(q2, x1 = 0, x2 = 2)

0−→ (q2, x1 = 0, x2 = 2)
to[x1]−−−→
⊥

(q3, x2 = 2)
2−→ (q3, x2 = 0)

to[x2]−−−→
⊥

(q0, ∅)
0.5−−→ (q0, ∅).

Bruyère, Pérez, Staquet, Vaandrager Syntax and semantics Automata with Timers 5 / 10



B1

B2

Figure 3: Block representation of the execution.

(q0, ∅)
1−→ (q0, ∅)

i−−→
x1,1

(q1, x1 = 1)
1−→ (q1, x1 = 0)

i−−→
x2,2

(q2, x1 = 0, x2 = 2)

0−→ (q2, x1 = 0, x2 = 2)
to[x1]−−−→
⊥

(q3, x2 = 2)
2−→ (q3, x2 = 0)

to[x2]−−−→
⊥

(q0, ∅)
0.5−−→ (q0, ∅).

We have concurrent actions.

Bruyère, Pérez, Staquet, Vaandrager Syntax and semantics Automata with Timers 6 / 10



B1

B2

Figure 3: Block representation of the execution.

(q0, ∅)
1−→ (q0, ∅)

i−−→
x1,1

(q1, x1 = 1)
1−→ (q1, x1 = 0)

i−−→
x2,2

(q2, x1 = 0, x2 = 2)

0−→ (q2, x1 = 0, x2 = 2)
to[x1]−−−→
⊥

(q3, x2 = 2)
2−→ (q3, x2 = 0)

to[x2]−−−→
⊥

(q0, ∅)
0.5−−→ (q0, ∅).

We have concurrent actions.

Bruyère, Pérez, Staquet, Vaandrager Syntax and semantics Automata with Timers 6 / 10



We can avoid this concurrency and still see the same sequence of actions.

B1

B2

1 1 0 2 0.5

B1

B2

1 0.5 0.5 1.5 1

Figure 4: Idea: wiggle delays between actions.

Is it always possible?

Bruyère, Pérez, Staquet, Vaandrager Concurrency Automata with Timers 7 / 10



We can avoid this concurrency and still see the same sequence of actions.

B1

B2

1 1 0 2 0.5

B1

B2

1 0.5 0.5 1.5 1

Figure 4: Idea: wiggle delays between actions.

Is it always possible?

Bruyère, Pérez, Staquet, Vaandrager Concurrency Automata with Timers 7 / 10



q0 q1

q2q3

i → (x1, 1)

i, (x2, 2)

to[x1] → (x1, 1)

i → (x1, 1)
to[x1] → ⊥

to[x2] → ⊥

i → (x2, 1)

to[x2] → ⊥

Figure 5: The same AT.

(q0, ∅)

1−→ (q0, ∅)
i−−→

x1,1
(q1, x1 = 1)

0−→ (q1, x1 = 1)
i−−→

x2,2
(q2, x1 = 1, x2 = 2)

1−→ (q2, x1 = 0, x2 = 1)
i−−→

x1,1
(q2, x1 = 1, x2 = 1)

1−→ (q2, x1 = 0, x2 = 0)

to[x2]−−−→
⊥

(q1, x1 = 0)
0−→ (q1, x1 = 0)

to[x1]−−−→
x1,1

(q1, x1 = 1)
0.5−−→ (q1, x1 = 0.5).

We cannot avoid this concurrency and still see the same sequence of actions.

Bruyère, Pérez, Staquet, Vaandrager Concurrency Automata with Timers 8 / 10



q0 q1

q2q3

i → (x1, 1)

i, (x2, 2)

to[x1] → (x1, 1)

i → (x1, 1)
to[x1] → ⊥

to[x2] → ⊥

i → (x2, 1)

to[x2] → ⊥

Figure 5: The same AT.

(q0, ∅)
1−→ (q0, ∅)

i−−→
x1,1

(q1, x1 = 1)

0−→ (q1, x1 = 1)
i−−→

x2,2
(q2, x1 = 1, x2 = 2)

1−→ (q2, x1 = 0, x2 = 1)
i−−→

x1,1
(q2, x1 = 1, x2 = 1)

1−→ (q2, x1 = 0, x2 = 0)

to[x2]−−−→
⊥

(q1, x1 = 0)
0−→ (q1, x1 = 0)

to[x1]−−−→
x1,1

(q1, x1 = 1)
0.5−−→ (q1, x1 = 0.5).

We cannot avoid this concurrency and still see the same sequence of actions.

Bruyère, Pérez, Staquet, Vaandrager Concurrency Automata with Timers 8 / 10



q0 q1

q2q3

i → (x1, 1)

i, (x2, 2)

to[x1] → (x1, 1)

i → (x1, 1)
to[x1] → ⊥

to[x2] → ⊥

i → (x2, 1)

to[x2] → ⊥

Figure 5: The same AT.

(q0, ∅)
1−→ (q0, ∅)

i−−→
x1,1

(q1, x1 = 1)
0−→ (q1, x1 = 1)

i−−→
x2,2

(q2, x1 = 1, x2 = 2)

1−→ (q2, x1 = 0, x2 = 1)
i−−→

x1,1
(q2, x1 = 1, x2 = 1)

1−→ (q2, x1 = 0, x2 = 0)

to[x2]−−−→
⊥

(q1, x1 = 0)
0−→ (q1, x1 = 0)

to[x1]−−−→
x1,1

(q1, x1 = 1)
0.5−−→ (q1, x1 = 0.5).

We cannot avoid this concurrency and still see the same sequence of actions.

Bruyère, Pérez, Staquet, Vaandrager Concurrency Automata with Timers 8 / 10



q0 q1

q2q3

i → (x1, 1)

i, (x2, 2)

to[x1] → (x1, 1)

i → (x1, 1)
to[x1] → ⊥

to[x2] → ⊥

i → (x2, 1)

to[x2] → ⊥

Figure 5: The same AT.

(q0, ∅)
1−→ (q0, ∅)

i−−→
x1,1

(q1, x1 = 1)
0−→ (q1, x1 = 1)

i−−→
x2,2

(q2, x1 = 1, x2 = 2)

1−→ (q2, x1 = 0, x2 = 1)
i−−→

x1,1
(q2, x1 = 1, x2 = 1)

1−→ (q2, x1 = 0, x2 = 0)

to[x2]−−−→
⊥

(q1, x1 = 0)
0−→ (q1, x1 = 0)

to[x1]−−−→
x1,1

(q1, x1 = 1)
0.5−−→ (q1, x1 = 0.5).

We cannot avoid this concurrency and still see the same sequence of actions.

Bruyère, Pérez, Staquet, Vaandrager Concurrency Automata with Timers 8 / 10



q0 q1

q2q3

i → (x1, 1)

i, (x2, 2)

to[x1] → (x1, 1)

i → (x1, 1)
to[x1] → ⊥

to[x2] → ⊥

i → (x2, 1)

to[x2] → ⊥

Figure 5: The same AT.

(q0, ∅)
1−→ (q0, ∅)

i−−→
x1,1

(q1, x1 = 1)
0−→ (q1, x1 = 1)

i−−→
x2,2

(q2, x1 = 1, x2 = 2)

1−→ (q2, x1 = 0, x2 = 1)
i−−→

x1,1
(q2, x1 = 1, x2 = 1)

1−→ (q2, x1 = 0, x2 = 0)

to[x2]−−−→
⊥

(q1, x1 = 0)

0−→ (q1, x1 = 0)
to[x1]−−−→
x1,1

(q1, x1 = 1)
0.5−−→ (q1, x1 = 0.5).

We cannot avoid this concurrency and still see the same sequence of actions.

Bruyère, Pérez, Staquet, Vaandrager Concurrency Automata with Timers 8 / 10



q0 q1

q2q3

i → (x1, 1)

i, (x2, 2)

to[x1] → (x1, 1)

i → (x1, 1)
to[x1] → ⊥

to[x2] → ⊥

i → (x2, 1)

to[x2] → ⊥

Figure 5: The same AT.

(q0, ∅)
1−→ (q0, ∅)

i−−→
x1,1

(q1, x1 = 1)
0−→ (q1, x1 = 1)

i−−→
x2,2

(q2, x1 = 1, x2 = 2)

1−→ (q2, x1 = 0, x2 = 1)
i−−→

x1,1
(q2, x1 = 1, x2 = 1)

1−→ (q2, x1 = 0, x2 = 0)

to[x2]−−−→
⊥

(q1, x1 = 0)
0−→ (q1, x1 = 0)

to[x1]−−−→
x1,1

(q1, x1 = 1)
0.5−−→ (q1, x1 = 0.5).

We cannot avoid this concurrency and still see the same sequence of actions.

Bruyère, Pérez, Staquet, Vaandrager Concurrency Automata with Timers 8 / 10



B2

B3
B1

Figure 6: Block representation of the timed run.

(q0, ∅)
1−→ (q0, ∅)

i−−→
x1,1

(q1, x1 = 1)
0−→ (q1, x1 = 1)

i−−→
x2,2

(q2, x1 = 1, x2 = 2)

1−→ (q2, x1 = 0, x2 = 1)
i−−→

x1,1
(q2, x1 = 1, x2 = 1)

1−→ (q2, x1 = 0, x2 = 0)

to[x2]−−−→
⊥

(q1, x1 = 0)
0−→ (q1, x1 = 0)

to[x1]−−−→
x1,1

(q1, x1 = 1)
0.5−−→ (q1, x1 = 0.5).

We cannot avoid this concurrency and still see the same sequence of actions.

Bruyère, Pérez, Staquet, Vaandrager Concurrency Automata with Timers 8 / 10



B2

B3
B1

Figure 6: Block representation of the timed run.

(q0, ∅)
1−→ (q0, ∅)

i−−→
x1,1

(q1, x1 = 1)
0−→ (q1, x1 = 1)

i−−→
x2,2

(q2, x1 = 1, x2 = 2)

1−→ (q2, x1 = 0, x2 = 1)
i−−→

x1,1
(q2, x1 = 1, x2 = 1)

1−→ (q2, x1 = 0, x2 = 0)

to[x2]−−−→
⊥

(q1, x1 = 0)
0−→ (q1, x1 = 0)

to[x1]−−−→
x1,1

(q1, x1 = 1)
0.5−−→ (q1, x1 = 0.5).

We cannot avoid this concurrency and still see the same sequence of actions.
Bruyère, Pérez, Staquet, Vaandrager Concurrency Automata with Timers 8 / 10



B1

B2

(a) Can be avoided.

B2

B3
B1

(b) Can not be avoided.

Figure 7: Some concurrency can be avoided, some not.

Can we characterize when it is possible to remove the concurrency?

Yes… But there is not enough time!

Bruyère, Pérez, Staquet, Vaandrager Concurrency — Towards a characterization Automata with Timers 9 / 10



B1

B2

(a) Can be avoided.

B2

B3
B1

(b) Can not be avoided.

Figure 7: Some concurrency can be avoided, some not.

Can we characterize when it is possible to remove the concurrency?

Yes… But there is not enough time!

Bruyère, Pérez, Staquet, Vaandrager Concurrency — Towards a characterization Automata with Timers 9 / 10



B1

B2

(a) Can be avoided.

B2

B3
B1

(b) Can not be avoided.

Figure 7: Some concurrency can be avoided, some not.

Can we characterize when it is possible to remove the concurrency?

Yes… But there is not enough time!

Bruyère, Pérez, Staquet, Vaandrager Concurrency — Towards a characterization Automata with Timers 9 / 10



We studied two problems.

Theorem 1 (Contribution)
Fix an automaton and a state q. Deciding whether there exists an execution of the
automaton that reaches q is PSPACE-complete.

Theorem 2 (Contribution)
Deciding whether an AT contains an execution in which some concurrency can not be
avoided is PSPACE-hard and in 3EXP.

Thank you!
For all details, see Bruyère et al., “Automata with Timers”, 2023.

Bruyère, Pérez, Staquet, Vaandrager Results Automata with Timers 10 / 10



We studied two problems.

Theorem 1 (Contribution)
Fix an automaton and a state q. Deciding whether there exists an execution of the
automaton that reaches q is PSPACE-complete.

Theorem 2 (Contribution)
Deciding whether an AT contains an execution in which some concurrency can not be
avoided is PSPACE-hard and in 3EXP.

Thank you!
For all details, see Bruyère et al., “Automata with Timers”, 2023.

Bruyère, Pérez, Staquet, Vaandrager Results Automata with Timers 10 / 10



We studied two problems.

Theorem 1 (Contribution)
Fix an automaton and a state q. Deciding whether there exists an execution of the
automaton that reaches q is PSPACE-complete.

Theorem 2 (Contribution)
Deciding whether an AT contains an execution in which some concurrency can not be
avoided is PSPACE-hard and in 3EXP.

Thank you!
For all details, see Bruyère et al., “Automata with Timers”, 2023.

Bruyère, Pérez, Staquet, Vaandrager Results Automata with Timers 10 / 10



We studied two problems.

Theorem 1 (Contribution)
Fix an automaton and a state q. Deciding whether there exists an execution of the
automaton that reaches q is PSPACE-complete.

Theorem 2 (Contribution)
Deciding whether an AT contains an execution in which some concurrency can not be
avoided is PSPACE-hard and in 3EXP.

Thank you!
For all details, see Bruyère et al., “Automata with Timers”, 2023.

Bruyère, Pérez, Staquet, Vaandrager Results Automata with Timers 10 / 10



References I

Angluin, Dana. “Learning Regular Sets from Queries and Counterexamples”. In: Inf.
Comput. 75.2 (1987), pp. 87–106. doi: 10.1016/0890-5401(87)90052-6.
Baier, Christel and Joost-Pieter Katoen. Principles of model checking. MIT Press,
2008. isbn: 978-0-262-02649-9.
Bruyère, Véronique et al. “Automata with Timers”. In: CoRR abs/2305.07451
(2023). doi: 10.48550/arXiv.2305.07451. arXiv: 2305.07451. url:
https://doi.org/10.48550/arXiv.2305.07451.
Clarke, Edmund M. et al., eds. Handbook of Model Checking. Springer, 2018. isbn:
978-3-319-10574-1. doi: 10.1007/978-3-319-10575-8.

Bruyère, Pérez, Staquet, Vaandrager Automata with Timers 1 / 1

https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.48550/arXiv.2305.07451
https://arxiv.org/abs/2305.07451
https://doi.org/10.48550/arXiv.2305.07451
https://doi.org/10.1007/978-3-319-10575-8

	Motivation: timed systems
	Syntax and semantics
	Concurrency
	Towards a characterization

	Results
	Appendix
	References


