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Many computer systems have timing constraints:
I Network protocols;
I Schedulers;
I Embedded systems;
I In general, real-time systems.

Well-known model for these systems: timed automata.1

In short: finite automata augmented with clocks that can be reset or used in guards
along transitions and states.

BUT timed automata are hard to construct and understand.

1

Baier and Katoen, Principles of model checking, 2008; Clarke et al., Handbook of Model Checking,
2018
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We focus on properties that can be represented with timers: automata with timers.

Timed automata Automata with timers

I

Clocks go from 0 to infinity;

I

Timers go from a value set by the transi-
tion to 0;

I

We know the current value of the clocks;

I

We do not know the current value of the
timers;

I

Timed automata are more expressive;

I

Automata with timers are more restrictive;

I

Learning (à la Angluin2) timed automata
is challenging;

I

Future work: learning algorithm;

I

Well-known model.

I

This work studies some properties of au-
tomata with timers.

2

Angluin, “Learning Regular Sets from Queries and Counterexamples”, 1987
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An automaton with timers (AT) is a
tuple A = (X, I,Q, q0, χ, δ) where
I X is the set of timers,
I I is the set of actions,

I Q is the finite set of states,
I q0 ∈ Q is the initial state,
I χ : Q → P(X) gives the active

timers of each state,
I δ is the transition function.

q0 q1

q2q3

i → (x1, 1)

i → (x2, 2)

to[x1] → (x1, 1)

i → (x1, 1)

to[x1] → ⊥

to[x2] → ⊥

i → (x2, 1)

to[x2] → ⊥

Figure 1: An AT.
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q0 q1

q2q3

i → (x1, 1)

i → (x2, 2)

to[x1] → (x1, 1)

i → (x1, 1)
to[x1] → ⊥

to[x2] → ⊥

i → (x2, 1)

to[x2] → ⊥

Figure 2: The same AT.

(q0, ∅)

1−→ (q0, ∅)
i−−→

x1,1
(q1, x1 = 1)

1−→ (q1, x1 = 0)
i−−→

x2,2
(q2, x1 = 0, x2 = 2)

0−→ (q2, x1 = 0, x2 = 2)
to[x1]−−−→
⊥

(q3, x2 = 2)
2−→ (q3, x2 = 0)

to[x2]−−−→
⊥

(q0, ∅)
0.5−−→ (q0, ∅).

Bruyère, Pérez, Staquet, Vaandrager Syntax and semantics Automata with Timers 5 / 10



q0 q1

q2q3

i → (x1, 1)

i → (x2, 2)

to[x1] → (x1, 1)

i → (x1, 1)
to[x1] → ⊥

to[x2] → ⊥

i → (x2, 1)

to[x2] → ⊥

Figure 2: The same AT.

(q0, ∅)
1−→ (q0, ∅)

i−−→
x1,1

(q1, x1 = 1)
1−→ (q1, x1 = 0)

i−−→
x2,2

(q2, x1 = 0, x2 = 2)

0−→ (q2, x1 = 0, x2 = 2)
to[x1]−−−→
⊥

(q3, x2 = 2)
2−→ (q3, x2 = 0)

to[x2]−−−→
⊥

(q0, ∅)
0.5−−→ (q0, ∅).

Bruyère, Pérez, Staquet, Vaandrager Syntax and semantics Automata with Timers 5 / 10



q0 q1

q2q3

i → (x1, 1)

i → (x2, 2)

to[x1] → (x1, 1)

i → (x1, 1)
to[x1] → ⊥

to[x2] → ⊥

i → (x2, 1)

to[x2] → ⊥

Figure 2: The same AT.

(q0, ∅)
1−→ (q0, ∅)

i−−→
x1,1

(q1, x1 = 1)

1−→ (q1, x1 = 0)
i−−→

x2,2
(q2, x1 = 0, x2 = 2)

0−→ (q2, x1 = 0, x2 = 2)
to[x1]−−−→
⊥

(q3, x2 = 2)
2−→ (q3, x2 = 0)

to[x2]−−−→
⊥

(q0, ∅)
0.5−−→ (q0, ∅).

Bruyère, Pérez, Staquet, Vaandrager Syntax and semantics Automata with Timers 5 / 10



q0 q1

q2q3

i → (x1, 1)

i → (x2, 2)

to[x1] → (x1, 1)

i → (x1, 1)
to[x1] → ⊥

to[x2] → ⊥

i → (x2, 1)

to[x2] → ⊥

Figure 2: The same AT.

(q0, ∅)
1−→ (q0, ∅)

i−−→
x1,1

(q1, x1 = 1)
1−→ (q1, x1 = 0)

i−−→
x2,2

(q2, x1 = 0, x2 = 2)

0−→ (q2, x1 = 0, x2 = 2)
to[x1]−−−→
⊥

(q3, x2 = 2)
2−→ (q3, x2 = 0)

to[x2]−−−→
⊥

(q0, ∅)
0.5−−→ (q0, ∅).

Bruyère, Pérez, Staquet, Vaandrager Syntax and semantics Automata with Timers 5 / 10



q0 q1

q2q3

i → (x1, 1)

i → (x2, 2)

to[x1] → (x1, 1)

i → (x1, 1)
to[x1] → ⊥

to[x2] → ⊥

i → (x2, 1)

to[x2] → ⊥

Figure 2: The same AT.

(q0, ∅)
1−→ (q0, ∅)

i−−→
x1,1

(q1, x1 = 1)
1−→ (q1, x1 = 0)

i−−→
x2,2

(q2, x1 = 0, x2 = 2)

0−→ (q2, x1 = 0, x2 = 2)
to[x1]−−−→
⊥

(q3, x2 = 2)
2−→ (q3, x2 = 0)

to[x2]−−−→
⊥

(q0, ∅)
0.5−−→ (q0, ∅).

Bruyère, Pérez, Staquet, Vaandrager Syntax and semantics Automata with Timers 5 / 10



q0 q1

q2q3

i → (x1, 1)

i → (x2, 2)

to[x1] → (x1, 1)

i → (x1, 1)
to[x1] → ⊥

to[x2] → ⊥

i → (x2, 1)

to[x2] → ⊥

Figure 2: The same AT.

(q0, ∅)
1−→ (q0, ∅)

i−−→
x1,1

(q1, x1 = 1)
1−→ (q1, x1 = 0)

i−−→
x2,2

(q2, x1 = 0, x2 = 2)

0−→ (q2, x1 = 0, x2 = 2)
to[x1]−−−→
⊥

(q3, x2 = 2)

2−→ (q3, x2 = 0)
to[x2]−−−→
⊥

(q0, ∅)
0.5−−→ (q0, ∅).

Bruyère, Pérez, Staquet, Vaandrager Syntax and semantics Automata with Timers 5 / 10



q0 q1

q2q3

i → (x1, 1)

i → (x2, 2)

to[x1] → (x1, 1)

i → (x1, 1)
to[x1] → ⊥

to[x2] → ⊥

i → (x2, 1)

to[x2] → ⊥

Figure 2: The same AT.

(q0, ∅)
1−→ (q0, ∅)

i−−→
x1,1

(q1, x1 = 1)
1−→ (q1, x1 = 0)

i−−→
x2,2

(q2, x1 = 0, x2 = 2)

0−→ (q2, x1 = 0, x2 = 2)
to[x1]−−−→
⊥

(q3, x2 = 2)
2−→ (q3, x2 = 0)

to[x2]−−−→
⊥

(q0, ∅)
0.5−−→ (q0, ∅).

Bruyère, Pérez, Staquet, Vaandrager Syntax and semantics Automata with Timers 5 / 10



B1

B2

Figure 3: Block representation of the execution.

(q0, ∅)
1−→ (q0, ∅)

i−−→
x1,1

(q1, x1 = 1)
1−→ (q1, x1 = 0)

i−−→
x2,2

(q2, x1 = 0, x2 = 2)

0−→ (q2, x1 = 0, x2 = 2)
to[x1]−−−→
⊥

(q3, x2 = 2)
2−→ (q3, x2 = 0)

to[x2]−−−→
⊥

(q0, ∅)
0.5−−→ (q0, ∅).

We have concurrent actions.
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We can avoid this concurrency and still see the same sequence of actions.

B1

B2

1 1 0 2 0.5

B1

B2

1 0.5 0.5 1.5 1

Figure 4: Idea: wiggle delays between actions.

Is it always possible?
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q0 q1

q2q3

i → (x1, 1)

i, (x2, 2)

to[x1] → (x1, 1)

i → (x1, 1)
to[x1] → ⊥

to[x2] → ⊥

i → (x2, 1)

to[x2] → ⊥

Figure 5: The same AT.

(q0, ∅)

1−→ (q0, ∅)
i−−→

x1,1
(q1, x1 = 1)

0−→ (q1, x1 = 1)
i−−→

x2,2
(q2, x1 = 1, x2 = 2)

1−→ (q2, x1 = 0, x2 = 1)
i−−→

x1,1
(q2, x1 = 1, x2 = 1)

1−→ (q2, x1 = 0, x2 = 0)

to[x2]−−−→
⊥

(q1, x1 = 0)
0−→ (q1, x1 = 0)

to[x1]−−−→
x1,1

(q1, x1 = 1)
0.5−−→ (q1, x1 = 0.5).

We cannot avoid this concurrency and still see the same sequence of actions.
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(a) Can be avoided.
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B3
B1

(b) Can not be avoided.

Figure 7: Some concurrency can be avoided, some not.

Can we characterize when it is possible to remove the concurrency?

Yes… But there is not enough time!
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We studied two problems.

Theorem 1 (Contribution)
Fix an automaton and a state q. Deciding whether there exists an execution of the
automaton that reaches q is PSPACE-complete.

Theorem 2 (Contribution)
Deciding whether an AT contains an execution in which some concurrency can not be
avoided is PSPACE-hard and in 3EXP.

Thank you!
For all details, see Bruyère et al., “Automata with Timers”, 2023.
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