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Many computer systems have timing constraints:
I Network protocols;
I Schedulers;
I Embedded systems;
I In general, real-time systems.

Well-known model for these systems: timed Mealy machines.

In short: finite Mealy machines augmented with clocks that can be reset or used in
guards along transitions and states.

BUT timed Mealy machines are hard to construct and understand.
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We focus on systems that can be represented with timers: Mealy machines with
timers.

Timed Mealy machines Mealy machines with timers

I

Clocks go from 0 to infinity;

I

Timers go from a given value to 0;

I

We can test the current value of the
clocks;

I

We can only test if a timer is zero;

I

Timed Mealy machines are more ex-
pressive;

I

Mealy machines with timers are more
restrictive;

I

Well-known model;

I

We previously studied some properties
of Mealy machines with timers;1

I

Learning timed Mealy machines is
challenging.

I

This work: learning algorithm.

1

Bruyère, Pérez, et al., “Automata with Timers”, 2023
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A Mealy machine with timers
(MMT) is a tuple
M = (X, I,O,Q, q0, δ) where
I X is the set of timers;
I I is the set of inputs; the set of

all actions is:

I ∪ {to[x] | x ∈ X};

I O is the set of outputs;

I Q is the finite set of states;
I q0 ∈ Q is the initial state;
I δ is the transition function.

q0

q1

q2

i/o, x := 2

to[x]/o, x := 2

i/o′, y := 3

i/o′, x := 2

to[x]/o, x := 2

to[y]/o,⊥

Figure 1: An MMT.
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q0 q1 q2
i/o, x := 2

to[x]/o, x := 2

i/o′, y := 3

i/o′, x := 2

to[x]/o, x := 2

to[y]/o,⊥

Figure 2: The same AT.

(q0, ∅)

1−→ (q0, ∅)
i/o−−→ (q1, x = 2)

2−→ (q1, x = 0)
to[x]/o−−−−→ (q1, x = 2)

0−→ (q1, x = 2)
i/o′−−→ (q2, x = 2, y = 3)

2−→ (q2, x = 0, y = 1)

i/o′−−→ (q2, x = 2, y = 1)
0.5−−→ (q2, x = 1.5, y = 0.5).

Bruyère, Garhewal, Pérez, Staquet, Vaandrager Syntax and semantics Learning MMTs 5 / 13



q0 q1 q2
i/o, x := 2

to[x]/o, x := 2

i/o′, y := 3

i/o′, x := 2

to[x]/o, x := 2

to[y]/o,⊥

Figure 2: The same AT.

(q0, ∅)
1−→ (q0, ∅)

i/o−−→ (q1, x = 2)
2−→ (q1, x = 0)

to[x]/o−−−−→ (q1, x = 2)

0−→ (q1, x = 2)
i/o′−−→ (q2, x = 2, y = 3)

2−→ (q2, x = 0, y = 1)

i/o′−−→ (q2, x = 2, y = 1)
0.5−−→ (q2, x = 1.5, y = 0.5).

Bruyère, Garhewal, Pérez, Staquet, Vaandrager Syntax and semantics Learning MMTs 5 / 13



q0 q1 q2
i/o, x := 2

to[x]/o, x := 2

i/o′, y := 3

i/o′, x := 2

to[x]/o, x := 2

to[y]/o,⊥

Figure 2: The same AT.

(q0, ∅)
1−→ (q0, ∅)

i/o−−→ (q1, x = 2)

2−→ (q1, x = 0)
to[x]/o−−−−→ (q1, x = 2)

0−→ (q1, x = 2)
i/o′−−→ (q2, x = 2, y = 3)

2−→ (q2, x = 0, y = 1)

i/o′−−→ (q2, x = 2, y = 1)
0.5−−→ (q2, x = 1.5, y = 0.5).

Bruyère, Garhewal, Pérez, Staquet, Vaandrager Syntax and semantics Learning MMTs 5 / 13



q0 q1 q2
i/o, x := 2

to[x]/o, x := 2

i/o′, y := 3

i/o′, x := 2

to[x]/o, x := 2

to[y]/o,⊥

Figure 2: The same AT.

(q0, ∅)
1−→ (q0, ∅)

i/o−−→ (q1, x = 2)
2−→ (q1, x = 0)

to[x]/o−−−−→ (q1, x = 2)

0−→ (q1, x = 2)
i/o′−−→ (q2, x = 2, y = 3)

2−→ (q2, x = 0, y = 1)

i/o′−−→ (q2, x = 2, y = 1)
0.5−−→ (q2, x = 1.5, y = 0.5).

Bruyère, Garhewal, Pérez, Staquet, Vaandrager Syntax and semantics Learning MMTs 5 / 13



q0 q1 q2
i/o, x := 2

to[x]/o, x := 2

i/o′, y := 3

i/o′, x := 2

to[x]/o, x := 2

to[y]/o,⊥

Figure 2: The same AT.

(q0, ∅)
1−→ (q0, ∅)

i/o−−→ (q1, x = 2)
2−→ (q1, x = 0)

to[x]/o−−−−→ (q1, x = 2)

0−→ (q1, x = 2)
i/o′−−→ (q2, x = 2, y = 3)

2−→ (q2, x = 0, y = 1)

i/o′−−→ (q2, x = 2, y = 1)
0.5−−→ (q2, x = 1.5, y = 0.5).

Bruyère, Garhewal, Pérez, Staquet, Vaandrager Syntax and semantics Learning MMTs 5 / 13



q0 q1 q2
i/o, x := 2

to[x]/o, x := 2

i/o′, y := 3

i/o′, x := 2

to[x]/o, x := 2

to[y]/o,⊥

Figure 2: The same AT.

(q0, ∅)
1−→ (q0, ∅)

i/o−−→ (q1, x = 2)
2−→ (q1, x = 0)

to[x]/o−−−−→ (q1, x = 2)

0−→ (q1, x = 2)
i/o′−−→ (q2, x = 2, y = 3)

2−→ (q2, x = 0, y = 1)

i/o′−−→ (q2, x = 2, y = 1)
0.5−−→ (q2, x = 1.5, y = 0.5).

Bruyère, Garhewal, Pérez, Staquet, Vaandrager Syntax and semantics Learning MMTs 5 / 13



q0 q1 q2
i/o, x := 2

to[x]/o, x := 2

i/o′, y := 3

i/o′, x := 2

to[x]/o, x := 2

to[y]/o,⊥

Figure 2: The same AT.

(q0, ∅)
1−→ (q0, ∅)

i/o−−→ (q1, x = 2)
2−→ (q1, x = 0)

to[x]/o−−−−→ (q1, x = 2)

0−→ (q1, x = 2)
i/o′−−→ (q2, x = 2, y = 3)

2−→ (q2, x = 0, y = 1)

i/o′−−→ (q2, x = 2, y = 1)
0.5−−→ (q2, x = 1.5, y = 0.5).

Bruyère, Garhewal, Pérez, Staquet, Vaandrager Syntax and semantics Learning MMTs 5 / 13



q0 q1 q2
i/o, x := 2

to[x]/o, x := 2

i/o′, y := 3

i/o′, x := 2

to[x]/o, x := 2

to[y]/o,⊥

Figure 2: The same AT.

(q0, ∅)
1−→ (q0, ∅)

i/o−−→ (q1, x = 2)
2−→ (q1, x = 0)

to[x]/o−−−−→ (q1, x = 2)

0−→ (q1, x = 2)
i/o′−−→ (q2, x = 2, y = 3)

2−→ (q2, x = 0, y = 1)

i/o′−−→ (q2, x = 2, y = 1)
0.5−−→ (q2, x = 1.5, y = 0.5).

Bruyère, Garhewal, Pérez, Staquet, Vaandrager Syntax and semantics Learning MMTs 5 / 13



Learner Teacher
Knows an MMT M

OQ(w) : outputs of (qM0 , ∅) w−→?

outputs of the timed run

EQ(H) : M
time
≈ H?

true or a counterexample

Figure 3: Adaptation of Angluin’s framework2 to MMTs.

Both queries are in the timed world… Cumbersome to use!

2Angluin, “Learning Regular Sets from Queries and Counterexamples”, 1987; Shahbaz and Groz,
“Inferring mealy machines”, 2009.
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Learner Teacher
Knows an MMT M

OQu(w) : outputs of qM0
w−→?

outputs of the untimed run

WQu(w) : possible timeouts after qM0
w−→?

set of pairs (j, c)

EQu(H) : M
untime
≈ H?

true or a counterexample

Figure 4: Untimed adaptation of Angluin’s framework3 to MMTs.

We stay in the untimed world!
3Angluin, “Learning Regular Sets from Queries and Counterexamples”, 1987; Shahbaz and Groz,

“Inferring mealy machines”, 2009.
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Proposition 1
The untimed queries can be implemented via a polynomial number of timed queries.

Does not hold for all MMTs!
It holds when an MMT is “good”:
I timeouts are observed via their outputs,
I for every untimed sequence of transitions, there exists a timed run using exactly

this sequence of transitions…
I with all delays > 0 and there is at most one timer that times out at any time

(see Bruyère, Pérez, et al., “Automata with Timers”, 2023).

Proposition 2
It is possible to construct an MMT in which the second condition is satisfied.
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q0

q1

q2

i/o, x := 2

to[x]/o, x := 2

i/o′, y := 3

i/o′, x := 2

to[x]/o, x := 2

to[y]/o,⊥

;

q0

q1

q2

q3

q4

i/o, x := 2

i/o′, y := 3

to[x]/o, x := 2

i/o′, x := 2 to[x]/o, x := 2

to[x]/o,⊥

i/o′, x := 2

i/o′,⊥

to[y]/o,⊥

to[y]/o,⊥

Bruyère, Garhewal, Pérez, Staquet, Vaandrager Learning algorithm — Framework Learning MMTs 9 / 13



q0

q1

q2

i/o, x := 2

to[x]/o, x := 2

i/o′, y := 3

i/o′, x := 2

to[x]/o, x := 2

to[y]/o,⊥ ;

q0

q1

q2

q3

q4

i/o, x := 2

i/o′, y := 3

to[x]/o, x := 2

i/o′, x := 2 to[x]/o, x := 2

to[x]/o,⊥

i/o′, x := 2

i/o′,⊥

to[y]/o,⊥

to[y]/o,⊥

Bruyère, Garhewal, Pérez, Staquet, Vaandrager Learning algorithm — Framework Learning MMTs 9 / 13



We adapt L# (active learning algorithm for Mealy machines4) to MMTs: L#
MMT.

Theorem 3
Let M be a “good” MMT and ` be the length of the longest counterexample returned
by the teacher. Then,
I the L#

MMT algorithm eventually terminates and returns an MMT N such that
M

time
≈ N and whose size is polynomial in

∣∣QM∣∣ and factorial in
∣∣XM∣∣, and

I in time and number of untimed queries polynomial in
∣∣QM∣∣, |I|, and `, and

factorial in
∣∣XM∣∣.

4Vaandrager et al., “A New Approach for Active Automata Learning Based on Apartness”, 2022.
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q0

q1

q2

q3

q4

i/o, x := 2

i/o′, y := 3

to[x]/o, x := 2

i/o′, x := 2 to[x]/o, x := 2

to[x]/o,⊥

i/o′, x := 2

i/o′,⊥

to[y]/o,⊥

to[y]/o,⊥

t0

t1t2

t3

t5 t6t7

t4

i/o, x := 2

to[x]/o
⊥

i/o′,⊥i/o′, y := 3

to[x]/o
⊥

i/o′,⊥i/o′, x := 2

to[y]/o
⊥

to[x]/o
⊥

We want to add i · i · i and
the potential timeouts.

I OQu(i·i·i) ; o·o′ ·o′.

I So, t3
i/o′−−→
⊥

t5.

I WQu(i · i · i)
; {(2, 3), (3, 2)}.

I So, t1
i−→ t3 starts a

timer at constant 3.
I And t3

i−→ t5 starts a
timer at constant 2.
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We implemented L#
MMT in Rust5 and ran some experiments.

Model |Q| |I| |X| |WQu| |OQu| |EQu| Time[msecs]
AKM 4 5 1 22 35 2 684
CAS 8 4 1 60 89 3 1344
Light 4 2 1 10 13 2 302
PC 8 9 1 75 183 4 2696
TCP 11 8 1 123 366 8 3182
Train 6 3 1 32 28 3 1559
Running example 3 1 2 11 5 2 1039
FDDI 1-station 9 2 2 32 20 1 1105
Oven 12 5 1 907 317 3 9452
WSN 9 4 1 175 108 4 3291

5https://gitlab.science.ru.nl/bharat/mmt_lsharp.
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Still work to be done:
I Further experiments with more timers,
I Simplify the learning algorithm as much as possible.

Thank you!
For all details, see

Bruyère, Garhewal, et al., “Active Learning of Mealy Machines with Timers”, 2024.
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