
Active Learning of Automata with Resources
Private PhD Defense

Gaëtan Staquet

Theoretical computer science Formal Techniques in Software Engineering
University of Mons University of Antwerp

June 19, 2024



Part I – Preliminaries
Base definitions



Introduction Finite automata Learning with L∗

Question. How to automatically construct a model from a black-box system?

↪→ Active automata learning.

But simple finite automata are not expressive enough.

↪→ Extend automata with resources.

Goals of the thesis:
I New learning algorithms for automata

extended with
I a counter (Part 2),
I timers (Part 4).

I Validation algorithm relying on
learning an automaton with a stack
(Part 3).

Structure for today:
I Recall L∗ learning algorithm.
I In each part, present the main

theorem and focus on one property.
Also, focus on theory; experimental
results are ignored.

Staquet Introduction Learning Automata with Resources 3 / 37



Introduction Finite automata Learning with L∗

Question. How to automatically construct a model from a black-box system?

↪→ Active automata learning.

But simple finite automata are not expressive enough.

↪→ Extend automata with resources.

Goals of the thesis:
I New learning algorithms for automata

extended with
I a counter (Part 2),
I timers (Part 4).

I Validation algorithm relying on
learning an automaton with a stack
(Part 3).

Structure for today:
I Recall L∗ learning algorithm.
I In each part, present the main

theorem and focus on one property.
Also, focus on theory; experimental
results are ignored.

Staquet Introduction Learning Automata with Resources 3 / 37



Introduction Finite automata Learning with L∗

Question. How to automatically construct a model from a black-box system?

↪→ Active automata learning.

But simple finite automata are not expressive enough.

↪→ Extend automata with resources.

Goals of the thesis:
I New learning algorithms for automata

extended with
I a counter (Part 2),
I timers (Part 4).

I Validation algorithm relying on
learning an automaton with a stack
(Part 3).

Structure for today:
I Recall L∗ learning algorithm.
I In each part, present the main

theorem and focus on one property.
Also, focus on theory; experimental
results are ignored.

Staquet Introduction Learning Automata with Resources 3 / 37



Introduction Finite automata Learning with L∗

Question. How to automatically construct a model from a black-box system?

↪→ Active automata learning.

But simple finite automata are not expressive enough.

↪→ Extend automata with resources.

Goals of the thesis:
I New learning algorithms for automata

extended with
I a counter (Part 2),
I timers (Part 4).

I Validation algorithm relying on
learning an automaton with a stack
(Part 3).

Structure for today:
I Recall L∗ learning algorithm.
I In each part, present the main

theorem and focus on one property.
Also, focus on theory; experimental
results are ignored.

Staquet Introduction Learning Automata with Resources 3 / 37



Introduction Finite automata Learning with L∗

A deterministic finite automaton (DFA, for
short) is a tuple A = (Σ, Q, q0, F , δ) where:
I Σ is the alphabet,

I Q is the finite, non-empty set of states,
I q0 ∈ Q is the initial state,
I F ⊆ Q is the set of final states,
I δ : Q × Σ → Q is the transition function.

q0 q1

q2 q3

a

b

a

b

a

b

a

b

Figure 1: A DFA.

Staquet Finite automata Learning Automata with Resources 4 / 37



Introduction Finite automata Learning with L∗

A deterministic finite automaton (DFA, for
short) is a tuple A = (Σ, Q, q0, F , δ) where:
I Σ is the alphabet,
I Q is the finite, non-empty set of states,
I q0 ∈ Q is the initial state,
I F ⊆ Q is the set of final states,

I δ : Q × Σ → Q is the transition function.

q0 q1

q2 q3

a

b

a

b

a

b

a

b

Figure 1: A DFA.

Staquet Finite automata Learning Automata with Resources 4 / 37



Introduction Finite automata Learning with L∗

A deterministic finite automaton (DFA, for
short) is a tuple A = (Σ, Q, q0, F , δ) where:
I Σ is the alphabet,
I Q is the finite, non-empty set of states,
I q0 ∈ Q is the initial state,
I F ⊆ Q is the set of final states,
I δ : Q × Σ → Q is the transition function.

q0 q1

q2 q3

a

b

a

b

a

b

a

b

Figure 1: A DFA.

Staquet Finite automata Learning Automata with Resources 4 / 37



Introduction Finite automata Learning with L∗

Question. How to construct a DFA from a black-box system?

↪→ L∗ algorithm.

Learner Teacher
Knows a regular

language L

MQ(w) : w ∈ L?

yes or no

EQ(H) : L(H) = L?

yes or a counterexample

Figure 2: Angluin’s framework.1

1Angluin, “Learning Regular Sets from Queries and Counterexamples”, 1987.
Staquet Learning with L∗ Learning Automata with Resources 5 / 37



Introduction Finite automata Learning with L∗

Question. How to construct a DFA from a black-box system?

↪→ L∗ algorithm.

Learner Teacher
Knows a regular

language L

MQ(w) : w ∈ L?

yes or no

EQ(H) : L(H) = L?

yes or a counterexample

Figure 2: Angluin’s framework.1

1Angluin, “Learning Regular Sets from Queries and Counterexamples”, 1987.
Staquet Learning with L∗ Learning Automata with Resources 5 / 37



Introduction Finite automata Learning with L∗

An observation table for a language L is a tuple
O = (R,S, T) where:
I R ( Σ∗ is the finite set of representatives,
I S ( Σ∗ is the finite set of separators,
I T : (R ∪RΣ) · S → {yes,no} is such that

T(u · s) =

{
yes if u · s ∈ L

no if u · s /∈ L.
; Membership queries.

Equivalence relation over the (extended)
representatives:

∀u, v ∈ R ∪RΣ : u ≡O v ⇔ ∀s ∈ S : T(u · s) = T(v · s).

ε b

ε no yes
b yes no
a no no
ba no no
bb no yes
aa no yes
ab no no

Figure 3: An observation table.

Staquet Learning with L∗ Learning Automata with Resources 6 / 37



Introduction Finite automata Learning with L∗

An observation table for a language L is a tuple
O = (R,S, T) where:
I R ( Σ∗ is the finite set of representatives,
I S ( Σ∗ is the finite set of separators,
I T : (R ∪RΣ) · S → {yes,no} is such that

T(u · s) =

{
yes if u · s ∈ L

no if u · s /∈ L.
; Membership queries.

Equivalence relation over the (extended)
representatives:

∀u, v ∈ R ∪RΣ : u ≡O v ⇔ ∀s ∈ S : T(u · s) = T(v · s).

ε b

ε no yes
b yes no
a no no
ba no no
bb no yes
aa no yes
ab no no

Figure 3: An observation table.

Staquet Learning with L∗ Learning Automata with Resources 6 / 37



Introduction Finite automata Learning with L∗

Question. When is it possible to construct a DFA from ≡O?

The table must be closed:
∀v ∈ RΣ,∃u ∈ R : v ≡O u.

The table must be Σ-consistent:
∀u, v ∈ R, a ∈ Σ : u ≡O v ⇒ u ·a ≡O v ·a.

Staquet Learning with L∗ Learning Automata with Resources 7 / 37



Introduction Finite automata Learning with L∗

Question. When is it possible to construct a DFA from ≡O?

The table must be closed:
∀v ∈ RΣ,∃u ∈ R : v ≡O u.

ε

ε no
a no
b yes

Figure 4: A table that is not closed, due to b.

The table must be Σ-consistent:
∀u, v ∈ R, a ∈ Σ : u ≡O v ⇒ u ·a ≡O v ·a.

Staquet Learning with L∗ Learning Automata with Resources 7 / 37



Introduction Finite automata Learning with L∗

Question. When is it possible to construct a DFA from ≡O?

The table must be closed:
∀v ∈ RΣ,∃u ∈ R : v ≡O u.

ε

ε no
b yes
a no
ba no
bb no

Figure 5: A closed table.

The table must be Σ-consistent:
∀u, v ∈ R, a ∈ Σ : u ≡O v ⇒ u ·a ≡O v ·a.

Staquet Learning with L∗ Learning Automata with Resources 7 / 37



Introduction Finite automata Learning with L∗

Question. When is it possible to construct a DFA from ≡O?

The table must be closed:
∀v ∈ RΣ,∃u ∈ R : v ≡O u.

ε

ε no
b yes
a no
ba no
bb no

Figure 5: A closed table.

The table must be Σ-consistent:
∀u, v ∈ R, a ∈ Σ : u ≡O v ⇒ u ·a ≡O v ·a.

ε

ε no
b yes
a no
ba no
bb no
aa no
ab no

Figure 6: A table that is not Σ-consistent, due
to ε ≡O a but b 6≡O ab.

Staquet Learning with L∗ Learning Automata with Resources 7 / 37



Introduction Finite automata Learning with L∗

Question. When is it possible to construct a DFA from ≡O?

The table must be closed:
∀v ∈ RΣ,∃u ∈ R : v ≡O u.

ε

ε no
b yes
a no
ba no
bb no

Figure 5: A closed table.

The table must be Σ-consistent:
∀u, v ∈ R, a ∈ Σ : u ≡O v ⇒ u ·a ≡O v ·a.

ε b

ε no yes
b yes no
a no no
ba no no
bb no yes
aa no yes
ab no no

Figure 7: A Σ-consistent table.

Staquet Learning with L∗ Learning Automata with Resources 7 / 37



Introduction Finite automata Learning with L∗

Theorem 1 (Angluin, “Learning Regular Sets from Queries and Counterexamples”,
1987). Let A be the minimal DFA accepting the target language L, and ` be the
length of the longest counterexample provided by the teacher. Then,
I the L∗ algorithm eventually terminates,
I in time and space polynomial in |A|, `, and |Σ|,
I with at most |A| equivalence queries and O

(
` · |A|2

)
membership queries.

Staquet Learning with L∗ Learning Automata with Resources 8 / 37



Part II – Learning Realtime One-Counter Automata
Bruyère, Pérez, and Staquet, “Learning Realtime One-Counter Automata”, TACAS,

2022



Realtime One-Counter Automata Learning

A realtime one-counter automaton (ROCA,
for short) is a tuple A = (Σ, Q, q0, F , δ) where:
I Σ is the alphabet,

I Q is the finite, non-empty set of states,
I q0 ∈ Q is the initial state,
I F ⊆ Q is the set of final states,
I δ : Q × Σ× {=0, >0} → Q × {+1,−1, 0}

is the transition function.
; Counted runs, e.g.,

(q0, 0)
a−→ (q0, 1)

b−→ (q1, 1)
a−→ (q1, 0).

A counted run is accepting when last state is in
F and counter value is 0.

q0

q1

q2

a[=0]/+1

a[=0]/0
b[=0]/0

a[=0]/0
b[=0]/0

b[=0]/0

a[>0]/+1

b[>0]/0

b[>0]/0
a[>0]/−1

a[>0]/0
b[>0]/0

Figure 8: An ROCA.

Staquet Realtime One-Counter Automata Learning Automata with Resources 10 / 37



Realtime One-Counter Automata Learning

A realtime one-counter automaton (ROCA,
for short) is a tuple A = (Σ, Q, q0, F , δ) where:
I Σ is the alphabet,
I Q is the finite, non-empty set of states,
I q0 ∈ Q is the initial state,
I F ⊆ Q is the set of final states,

I δ : Q × Σ× {=0, >0} → Q × {+1,−1, 0}
is the transition function.

; Counted runs, e.g.,

(q0, 0)
a−→ (q0, 1)

b−→ (q1, 1)
a−→ (q1, 0).

A counted run is accepting when last state is in
F and counter value is 0.

q0

q1

q2

a[=0]/+1

a[=0]/0
b[=0]/0

a[=0]/0
b[=0]/0

b[=0]/0

a[>0]/+1

b[>0]/0

b[>0]/0
a[>0]/−1

a[>0]/0
b[>0]/0

Figure 8: An ROCA.

Staquet Realtime One-Counter Automata Learning Automata with Resources 10 / 37



Realtime One-Counter Automata Learning

A realtime one-counter automaton (ROCA,
for short) is a tuple A = (Σ, Q, q0, F , δ) where:
I Σ is the alphabet,
I Q is the finite, non-empty set of states,
I q0 ∈ Q is the initial state,
I F ⊆ Q is the set of final states,
I δ : Q × Σ× {=0, >0} → Q × {+1,−1, 0}

is the transition function.

; Counted runs, e.g.,

(q0, 0)
a−→ (q0, 1)

b−→ (q1, 1)
a−→ (q1, 0).

A counted run is accepting when last state is in
F and counter value is 0.

q0

q1

q2

a[=0]/+1

a[=0]/0
b[=0]/0

a[=0]/0
b[=0]/0

b[=0]/0

a[>0]/+1

b[>0]/0

b[>0]/0
a[>0]/−1

a[>0]/0
b[>0]/0

Figure 8: An ROCA.

Staquet Realtime One-Counter Automata Learning Automata with Resources 10 / 37



Realtime One-Counter Automata Learning

A realtime one-counter automaton (ROCA,
for short) is a tuple A = (Σ, Q, q0, F , δ) where:
I Σ is the alphabet,
I Q is the finite, non-empty set of states,
I q0 ∈ Q is the initial state,
I F ⊆ Q is the set of final states,
I δ : Q × Σ× {=0, >0} → Q × {+1,−1, 0}

is the transition function.
; Counted runs, e.g.,

(q0, 0)
a−→ (q0, 1)

b−→ (q1, 1)
a−→ (q1, 0).

A counted run is accepting when last state is in
F and counter value is 0.

q0

q1

q2

a[=0]/+1

a[=0]/0
b[=0]/0

a[=0]/0
b[=0]/0

b[=0]/0

a[>0]/+1

b[>0]/0

b[>0]/0
a[>0]/−1

a[>0]/0
b[>0]/0

Figure 8: An ROCA.

Staquet Realtime One-Counter Automata Learning Automata with Resources 10 / 37



Realtime One-Counter Automata Learning

A realtime one-counter automaton (ROCA,
for short) is a tuple A = (Σ, Q, q0, F , δ) where:
I Σ is the alphabet,
I Q is the finite, non-empty set of states,
I q0 ∈ Q is the initial state,
I F ⊆ Q is the set of final states,
I δ : Q × Σ× {=0, >0} → Q × {+1,−1, 0}

is the transition function.
; Counted runs, e.g.,

(q0, 0)
a−→ (q0, 1)

b−→ (q1, 1)
a−→ (q1, 0).

A counted run is accepting when last state is in
F and counter value is 0.

q0

q1

q2

a[=0]/+1

a[=0]/0
b[=0]/0

a[=0]/0
b[=0]/0

b[=0]/0

a[>0]/+1

b[>0]/0

b[>0]/0
a[>0]/−1

a[>0]/0
b[>0]/0

Figure 8: An ROCA.

Staquet Realtime One-Counter Automata Learning Automata with Resources 10 / 37



Realtime One-Counter Automata Learning

Definition 2. Given an ROCA A, two words u, v are equivalent if

∀w ∈ Σ∗ : u · w ∈ L ⇔ v · w ∈ L

and
∀w ∈ Σ∗ : u · w, v · w ∈ Pref (L(A)) ⇒ cvA(u · w) = cvA(v · w).

Staquet Realtime One-Counter Automata — Behavior graph Learning Automata with Resources 11 / 37



Realtime One-Counter Automata Learning

ε a aa aaa . . .

b ab aab aaab . . .

0 1 2 3

a

b

a

b

a

b

a

b

a a a a

a, b b b b

Initial part Repeating part

Figure 9: The behavior graph of the ROCA.

Staquet Realtime One-Counter Automata — Behavior graph Learning Automata with Resources 12 / 37



Realtime One-Counter Automata Learning

ε a aa aaa . . .

b ab aab aaab . . .

0 1 2 3

a

b

a

b

a

b

a

b

a a a a

a, b b b b

Initial part Repeating part

Figure 9: The behavior graph of the ROCA.

Staquet Realtime One-Counter Automata — Behavior graph Learning Automata with Resources 12 / 37



Realtime One-Counter Automata Learning

ε a aa aaa . . .

b ab aab aaab . . .

0 1 2 3

a

b

a

b

a

b

a

b

a a a a

a, b b b b

Initial part Repeating part

Figure 9: The behavior graph of the ROCA.

Staquet Realtime One-Counter Automata — Behavior graph Learning Automata with Resources 12 / 37



Realtime One-Counter Automata Learning

Theorem 3 (Based on Neider and Löding, Learning visibly one-counter automata in
polynomial time, 2010). For any ROCA A, there always exists an ultimately periodic
representation of its behavior graph.

Proposition 4. From an ultimately periodic representation of the behavior graph of
A, an ROCA B can be constructed such that L(A) = L(B).

Goal of L∗
ROCA: learn an ultimately periodic representation of the behavior graph.

Staquet Realtime One-Counter Automata — Behavior graph Learning Automata with Resources 13 / 37



Realtime One-Counter Automata Learning

Theorem 3 (Based on Neider and Löding, Learning visibly one-counter automata in
polynomial time, 2010). For any ROCA A, there always exists an ultimately periodic
representation of its behavior graph.

Proposition 4. From an ultimately periodic representation of the behavior graph of
A, an ROCA B can be constructed such that L(A) = L(B).

Goal of L∗
ROCA: learn an ultimately periodic representation of the behavior graph.

Staquet Realtime One-Counter Automata — Behavior graph Learning Automata with Resources 13 / 37



Realtime One-Counter Automata Learning

Theorem 3 (Based on Neider and Löding, Learning visibly one-counter automata in
polynomial time, 2010). For any ROCA A, there always exists an ultimately periodic
representation of its behavior graph.

Proposition 4. From an ultimately periodic representation of the behavior graph of
A, an ROCA B can be constructed such that L(A) = L(B).

Goal of L∗
ROCA: learn an ultimately periodic representation of the behavior graph.

Staquet Realtime One-Counter Automata — Behavior graph Learning Automata with Resources 13 / 37



Realtime One-Counter Automata Learning

Learner Teacher
Knows an ROCA A

MQ(w) : w ∈ L(A)?

yes or no

CVQ(w) : counter value of w ∈ Pref (L(A))?

Counter value according to A

PEQ(H, `) : L(H) = L(A), up to counter value `?

yes or a counterexample

EQ(H) : L(H) = L(A)?

yes or a counterexample

Figure 10: Adaptation of Angluin’s framework for ROCAs.

Staquet Learning Learning Automata with Resources 14 / 37



Realtime One-Counter Automata Learning

Theorem 5. Let A be the ROCA of the teacher and ` be the length of the longest
counterexample returned by the teacher on (partial) equivalence queries. Then,
I the L∗

ROCA algorithm eventually terminates,
I in time and space exponential in |A|, |Σ| and `, and
I asking

I a number of PEQ in O
(
`3
)
,

I a number of EQ in O
(
|A| · `2

)
,

I and a number of MQ and CVQ exponential in |A|, |Σ| and `.

Question. Why the exponential blowup?

Staquet Learning Learning Automata with Resources 15 / 37



Realtime One-Counter Automata Learning

Theorem 5. Let A be the ROCA of the teacher and ` be the length of the longest
counterexample returned by the teacher on (partial) equivalence queries. Then,
I the L∗

ROCA algorithm eventually terminates,
I in time and space exponential in |A|, |Σ| and `, and
I asking

I a number of PEQ in O
(
`3
)
,

I a number of EQ in O
(
|A| · `2

)
,

I and a number of MQ and CVQ exponential in |A|, |Σ| and `.

Question. Why the exponential blowup?

Staquet Learning Learning Automata with Resources 15 / 37



Realtime One-Counter Automata Learning

Assume that an observation table for
L∗

ROCA is:
I an observation table as for L∗,
I augmented with counter values for

words known to be in Pref (L(A)):

C : (R ∪RΣ) · S → N ∪ {⊥}.

ε

ε no, 0
a no, 1
ab no, 1
aba yes, 0
b yes, 0
aa no,⊥
abb no,⊥
abaa yes, 0
abab yes, 0

Moreover, assume

∀u, v ∈ R ∪RΣ : u ≡O v ⇔ ∀s ∈ S : T(u · s) = T(v · s) ∧ C(u · s) = C(v · s).

Staquet Learning — Why exponential blowup? Learning Automata with Resources 16 / 37



Realtime One-Counter Automata Learning

Assume that an observation table for
L∗

ROCA is:
I an observation table as for L∗,
I augmented with counter values for

words known to be in Pref (L(A)):

C : (R ∪RΣ) · S → N ∪ {⊥}.

ε

ε no, 0
a no, 1
ab no, 1
aba yes, 0
b yes, 0
aa no,⊥
abb no,⊥
abaa yes, 0
abab yes, 0

Moreover, assume

∀u, v ∈ R ∪RΣ : u ≡O v ⇔ ∀s ∈ S : T(u · s) = T(v · s) ∧ C(u · s) = C(v · s).

Staquet Learning — Why exponential blowup? Learning Automata with Resources 16 / 37



Realtime One-Counter Automata Learning

1. ∀u ∈ R : abb 6≡O u.
; Add abb to R.

2. ∀u ∈ R : abbb 6≡O u.
; Add abbb to R.

3. ∀u ∈ R : abbbb 6≡O u.
; Add abbbb to R.

4. Repeat ad infinitum.

ε

ε no, 0
a no, 1
ab no, 1
aba yes, 0
b yes, 0
aa no,⊥
abb no,⊥
abaa yes, 0
abab yes, 0

Staquet Learning — Why exponential blowup? Learning Automata with Resources 17 / 37



Realtime One-Counter Automata Learning

1. ∀u ∈ R : abb 6≡O u.
; Add abb to R.

2. ∀u ∈ R : abbb 6≡O u.
; Add abbb to R.

3. ∀u ∈ R : abbbb 6≡O u.
; Add abbbb to R.

4. Repeat ad infinitum.

ε

ε no, 0
a no, 1
ab no, 1
aba yes, 0
abb no, 1
b yes, 0
aa no,⊥
abaa yes, 0
abab yes, 0
abba yes, 0
abbb no,⊥

Staquet Learning — Why exponential blowup? Learning Automata with Resources 17 / 37



Realtime One-Counter Automata Learning

1. ∀u ∈ R : abb 6≡O u.
; Add abb to R.

2. ∀u ∈ R : abbb 6≡O u.
; Add abbb to R.

3. ∀u ∈ R : abbbb 6≡O u.
; Add abbbb to R.

4. Repeat ad infinitum.

ε

ε no, 0
a no, 1
ab no, 1
aba yes, 0
abb no, 1
b yes, 0
aa no,⊥
abaa yes, 0
abab yes, 0
abba yes, 0
abbb no,⊥

Staquet Learning — Why exponential blowup? Learning Automata with Resources 17 / 37



Realtime One-Counter Automata Learning

1. ∀u ∈ R : abb 6≡O u.
; Add abb to R.

2. ∀u ∈ R : abbb 6≡O u.
; Add abbb to R.

3. ∀u ∈ R : abbbb 6≡O u.
; Add abbbb to R.

4. Repeat ad infinitum.

ε

ε no, 0
a no, 1
ab no, 1
aba yes, 0
abb no, 1
abbb no, 1
b yes, 0
aa no,⊥
abaa yes, 0
abab yes, 0
abba yes, 0
abbba yes, 0
abbbb no,⊥

Staquet Learning — Why exponential blowup? Learning Automata with Resources 17 / 37



Realtime One-Counter Automata Learning

1. ∀u ∈ R : abb 6≡O u.
; Add abb to R.

2. ∀u ∈ R : abbb 6≡O u.
; Add abbb to R.

3. ∀u ∈ R : abbbb 6≡O u.
; Add abbbb to R.

4. Repeat ad infinitum.

ε

ε no, 0
a no, 1
ab no, 1
aba yes, 0
abb no, 1
abbb no, 1
b yes, 0
aa no,⊥
abaa yes, 0
abab yes, 0
abba yes, 0
abbba yes, 0
abbbb no,⊥

Staquet Learning — Why exponential blowup? Learning Automata with Resources 17 / 37



Realtime One-Counter Automata Learning

We thus need two types of separators:
I for membership: Ŝ,
I for counter values: S ⊆ Ŝ.

We approximate the equivalence relation:
∀u, v ∈ R ∪RΣ, u ∈ Approx(v) if and only if
I for all s ∈ S, T(us) = T(vs), and
I for all s ∈ S, if C(us) 6= ⊥ and C(vs) 6= ⊥,

then C(us) = C(vs).

Not necessarily transitive: ε ∈ Approx(aa) and
aa ∈ Approx(a) but ε /∈ Approx(a).
Ensuring transitivity requires an exponential
number of steps.

ε a

ε no, 0 no
a no, 1 no
ab no, 1 yes
aba yes, 0 yes
aa no,⊥ no
b yes, 0 yes
abb no, 1 yes
abaa yes, 0 yes
abab yes, 0 yes
aaa no,⊥ no
aab no,⊥ no

Staquet Learning — Why exponential blowup? Learning Automata with Resources 18 / 37



Realtime One-Counter Automata Learning

We thus need two types of separators:
I for membership: Ŝ,
I for counter values: S ⊆ Ŝ.

We approximate the equivalence relation:
∀u, v ∈ R ∪RΣ, u ∈ Approx(v) if and only if
I for all s ∈ S, T(us) = T(vs), and
I for all s ∈ S, if C(us) 6= ⊥ and C(vs) 6= ⊥,

then C(us) = C(vs).

Not necessarily transitive: ε ∈ Approx(aa) and
aa ∈ Approx(a) but ε /∈ Approx(a).
Ensuring transitivity requires an exponential
number of steps.

ε a

ε no, 0 no
a no, 1 no
ab no, 1 yes
aba yes, 0 yes
aa no,⊥ no
b yes, 0 yes
abb no, 1 yes
abaa yes, 0 yes
abab yes, 0 yes
aaa no,⊥ no
aab no,⊥ no

Staquet Learning — Why exponential blowup? Learning Automata with Resources 18 / 37



Realtime One-Counter Automata Learning

We thus need two types of separators:
I for membership: Ŝ,
I for counter values: S ⊆ Ŝ.

We approximate the equivalence relation:
∀u, v ∈ R ∪RΣ, u ∈ Approx(v) if and only if
I for all s ∈ S, T(us) = T(vs), and
I for all s ∈ S, if C(us) 6= ⊥ and C(vs) 6= ⊥,

then C(us) = C(vs).

Not necessarily transitive: ε ∈ Approx(aa) and
aa ∈ Approx(a) but ε /∈ Approx(a).
Ensuring transitivity requires an exponential
number of steps.

ε a

ε no, 0 no
a no, 1 no
ab no, 1 yes
aba yes, 0 yes
aa no,⊥ no
b yes, 0 yes
abb no, 1 yes
abaa yes, 0 yes
abab yes, 0 yes
aaa no,⊥ no
aab no,⊥ no

Staquet Learning — Why exponential blowup? Learning Automata with Resources 18 / 37



Realtime One-Counter Automata Learning

We thus need two types of separators:
I for membership: Ŝ,
I for counter values: S ⊆ Ŝ.

We approximate the equivalence relation:
∀u, v ∈ R ∪RΣ, u ∈ Approx(v) if and only if
I for all s ∈ S, T(us) = T(vs), and
I for all s ∈ S, if C(us) 6= ⊥ and C(vs) 6= ⊥,

then C(us) = C(vs).

Not necessarily transitive: ε ∈ Approx(aa) and
aa ∈ Approx(a) but ε /∈ Approx(a).
Ensuring transitivity requires an exponential
number of steps.

ε a

ε no, 0 no
a no, 1 no
ab no, 1 yes
aba yes, 0 yes
aa no,⊥ no
b yes, 0 yes
abb no, 1 yes
abaa yes, 0 yes
abab yes, 0 yes
aaa no,⊥ no
aab no,⊥ no

Staquet Learning — Why exponential blowup? Learning Automata with Resources 18 / 37



Part III – Validating JSON Documents
Bruyère, Pérez, and Staquet, “Validating Streaming JSON Documents with Learned

VPAs”, TACAS, 2023



JSON Validation with an automaton

{
"title": "Active Learning of Automata with Resources",
"details": {

"pages": 341,
"chapters": 11

},
"nesting": { "inside": { . . . } }

}

An object is an unordered collection of
key-value pairs.
There are also arrays (ordered collections of
values); we mostly ignore them here.

A JSON document is composed of
nested objects and arrays.

We want to verify that the document
satisfies some constraints:
I "title" 7→ string
I "details" 7→ object such that

I "pages" 7→ integer
I "chapters" 7→ integer

I And so on.

Staquet JSON Learning Automata with Resources 20 / 37



JSON Validation with an automaton

{
"title": "Active Learning of Automata with Resources",
"details": {

"pages": 341,
"chapters": 11

},
"nesting": { "inside": { . . . } }

}

An object is an unordered collection of
key-value pairs.
There are also arrays (ordered collections of
values); we mostly ignore them here.

A JSON document is composed of
nested objects and arrays.

We want to verify that the document
satisfies some constraints:
I "title" 7→ string
I "details" 7→ object such that

I "pages" 7→ integer
I "chapters" 7→ integer

I And so on.

Staquet JSON Learning Automata with Resources 20 / 37



JSON Validation with an automaton

{
"title": "Active Learning of Automata with Resources",
"details": {

"pages": 341,
"chapters": 11

},
"nesting": { "inside": { . . . } }

}

An object is an unordered collection of
key-value pairs.
There are also arrays (ordered collections of
values); we mostly ignore them here.

A JSON document is composed of
nested objects and arrays.

We want to verify that the document
satisfies some constraints:
I "title" 7→ string
I "details" 7→ object such that

I "pages" 7→ integer
I "chapters" 7→ integer

I And so on.

Staquet JSON Learning Automata with Resources 20 / 37



JSON Validation with an automaton

Classical validation algorithm:
1. Explore the JSON document and the constraints in parallel;
2. If the current value does not match the sub-constraints, stop;
3. Otherwise, repeat recursively.

The constraints can contain Boolean operations.
↪→ The same value must be processed multiple times.

Staquet JSON Learning Automata with Resources 21 / 37



JSON Validation with an automaton

Classical validation algorithm:
1. Explore the JSON document and the constraints in parallel;
2. If the current value does not match the sub-constraints, stop;
3. Otherwise, repeat recursively.

The constraints can contain Boolean operations.
↪→ The same value must be processed multiple times.

Staquet JSON Learning Automata with Resources 21 / 37



JSON Validation with an automaton

Assume we are in a streaming context.
↪→ We receive the document one fragment at a time.

The classical algorithm must wait for the whole document before starting.

Our approach is based on learning an automaton from the constraints and then use it
for validation.

Question. Which kind of automaton?

Question. How to use it to validate documents while receiving them?

Staquet JSON Learning Automata with Resources 22 / 37



JSON Validation with an automaton

Assume we are in a streaming context.
↪→ We receive the document one fragment at a time.

The classical algorithm must wait for the whole document before starting.

Our approach is based on learning an automaton from the constraints and then use it
for validation.

Question. Which kind of automaton?

Question. How to use it to validate documents while receiving them?

Staquet JSON Learning Automata with Resources 22 / 37



JSON Validation with an automaton

We abstract the values:

{
"title": "Active Learning of Automata with Resources",
"details": {

"pages": 341,
"chapters": 11

}
}

Question. How to remember the nesting of objects and arrays?

↪→ A stack.

Question. Which kind of automaton?

↪→ A (visibly) pushdown automaton (VPA).

Staquet Validation with an automaton Learning Automata with Resources 23 / 37



JSON Validation with an automaton

We abstract the values:

{
"title": s,
"details": {

"pages": i,
"chapters": i

}
}

Question. How to remember the nesting of objects and arrays?

↪→ A stack.

Question. Which kind of automaton?

↪→ A (visibly) pushdown automaton (VPA).

Staquet Validation with an automaton Learning Automata with Resources 23 / 37



JSON Validation with an automaton

We abstract the values:

{
"title": s,
"details": {

"pages": i,
"chapters": i

}
}

Question. How to remember the nesting of objects and arrays?

↪→ A stack.

Question. Which kind of automaton?

↪→ A (visibly) pushdown automaton (VPA).

Staquet Validation with an automaton Learning Automata with Resources 23 / 37



JSON Validation with an automaton

We abstract the values:

{
"title": s,
"details": {

"pages": i,
"chapters": i

}
}

Question. How to remember the nesting of objects and arrays?

↪→ A stack.

Question. Which kind of automaton?

↪→ A (visibly) pushdown automaton (VPA).

Staquet Validation with an automaton Learning Automata with Resources 23 / 37



JSON Validation with an automaton

Theorem 6. Let C be a set of constraints describing JSON documents. There always
exists a VPA A whose language is the set of documents that are valid for C.

Theorem 7 (Isberner, “Foundations of active automata learning: an algorithmic
perspective”, 2015). Let L be a language accepted by some VPA. The TTTVPA can
learn a VPA accepting L with a polynomial number of membership and equivalence
queries.

Question. How to deal with the exponential number of permutations of the (un-
ordered) keys?

Fix an order over the set of keys.

Staquet Validation with an automaton Learning Automata with Resources 24 / 37



JSON Validation with an automaton

Theorem 6. Let C be a set of constraints describing JSON documents. There always
exists a VPA A whose language is the set of documents that are valid for C.

Theorem 7 (Isberner, “Foundations of active automata learning: an algorithmic
perspective”, 2015). Let L be a language accepted by some VPA. The TTTVPA can
learn a VPA accepting L with a polynomial number of membership and equivalence
queries.

Question. How to deal with the exponential number of permutations of the (un-
ordered) keys?

Fix an order over the set of keys.

Staquet Validation with an automaton Learning Automata with Resources 24 / 37



JSON Validation with an automaton

Theorem 6. Let C be a set of constraints describing JSON documents. There always
exists a VPA A whose language is the set of documents that are valid for C.

Theorem 7 (Isberner, “Foundations of active automata learning: an algorithmic
perspective”, 2015). Let L be a language accepted by some VPA. The TTTVPA can
learn a VPA accepting L with a polynomial number of membership and equivalence
queries.

Question. How to deal with the exponential number of permutations of the (un-
ordered) keys?

Fix an order over the set of keys.

Staquet Validation with an automaton Learning Automata with Resources 24 / 37



JSON Validation with an automaton

Theorem 8. Let C be a set of constraints over keys Σkey and A be a VPA that
recognizes C, with a fixed order over Σkey.
Then, checking whether a JSON document J satisfies C
I is in time polynomial in |J | and |A| and exponential in

∣∣Σkey
∣∣,

I and uses an amount of memory polynomial in |A|,
∣∣Σkey

∣∣, and d(J).

For a JSON document J , d(J) denotes its depth: number of nested objects and arrays.

Question. How to use the VPA to validate JSON documents whose objects do not
follow the fixed order?

Staquet Validation with an automaton Learning Automata with Resources 25 / 37



JSON Validation with an automaton

Theorem 8. Let C be a set of constraints over keys Σkey and A be a VPA that
recognizes C, with a fixed order over Σkey.
Then, checking whether a JSON document J satisfies C
I is in time polynomial in |J | and |A| and exponential in

∣∣Σkey
∣∣,

I and uses an amount of memory polynomial in |A|,
∣∣Σkey

∣∣, and d(J).

For a JSON document J , d(J) denotes its depth: number of nested objects and arrays.

Question. How to use the VPA to validate JSON documents whose objects do not
follow the fixed order?

Staquet Validation with an automaton Learning Automata with Resources 25 / 37



JSON Validation with an automaton

q0 q1

q2 q3 q4

q5 q6

q7 q8 q9

k1
i

, k2

i
{ push α

}
pop α

s
, k2

s

Valid documents:

{ k1 i , k2 i }
{ k2 i , k1 i }
{ k1 s , k2 s }
{ k2 s , k1 s }

We read { k2 i , k1 i }.

; Valid document.

Potential states for k2 i: {q3, q8}.
After reading k2: {q4, q9}.
After reading k2 i: {q5}.
Not q8

k2 i−−−→ q5.

Potential states for k1 i: {q0}.
After reading k1: {q1}.
After reading k1 i: {q2}.
Not q0

k1 i−−−→ q7.

Staquet Validation with an automaton Learning Automata with Resources 26 / 37



JSON Validation with an automaton

q0 q1

q2 q3 q4

q5 q6

q7 q8 q9

k1
i

, k2

i
{ push α

}
pop α

s
, k2

s

q0, k1, q2

q0, k1, q7

q3, k2, q5

q8, k2, q5

Figure 11: The key graph.

We read { k2 i , k1 i }.

; Valid document.

Potential states for k2 i: {q3, q8}.
After reading k2: {q4, q9}.
After reading k2 i: {q5}.
Not q8

k2 i−−−→ q5.

Potential states for k1 i: {q0}.
After reading k1: {q1}.
After reading k1 i: {q2}.
Not q0

k1 i−−−→ q7.

Staquet Validation with an automaton Learning Automata with Resources 26 / 37



JSON Validation with an automaton

q0 q1

q2 q3 q4

q5 q6

q7 q8 q9

k1
i

, k2

i
{ push α

}
pop α

s
, k2

s

q0, k1, q2

q0, k1, q7

q3, k2, q5

q8, k2, q5

Figure 11: The key graph.

We read { k2 i , k1 i }.

; Valid document.

Potential states for k2 i: {q3, q8}.
After reading k2: {q4, q9}.
After reading k2 i: {q5}.
Not q8

k2 i−−−→ q5.

Potential states for k1 i: {q0}.
After reading k1: {q1}.
After reading k1 i: {q2}.
Not q0

k1 i−−−→ q7.

Staquet Validation with an automaton Learning Automata with Resources 26 / 37



JSON Validation with an automaton

q0 q1

q2 q3 q4

q5 q6

q7 q8 q9

k1
i

, k2

i
{ push α

}
pop α

s
, k2

s

q0, k1, q2

q0, k1, q7

q3, k2, q5

q8, k2, q5

Figure 11: The key graph.

We read { k2 i , k1 i }.

; Valid document.

Potential states for k2 i: {q3, q8}.

After reading k2: {q4, q9}.
After reading k2 i: {q5}.
Not q8

k2 i−−−→ q5.

Potential states for k1 i: {q0}.
After reading k1: {q1}.
After reading k1 i: {q2}.
Not q0

k1 i−−−→ q7.

Staquet Validation with an automaton Learning Automata with Resources 26 / 37



JSON Validation with an automaton

q0 q1

q2 q3 q4

q5 q6

q7 q8 q9

k1
i

, k2

i
{ push α

}
pop α

s
, k2

s

q0, k1, q2

q0, k1, q7

q3, k2, q5

q8, k2, q5

Figure 11: The key graph.

We read { k2 i , k1 i }.

; Valid document.

Potential states for k2 i: {q3, q8}.
After reading k2: {q4, q9}.

After reading k2 i: {q5}.
Not q8

k2 i−−−→ q5.

Potential states for k1 i: {q0}.
After reading k1: {q1}.
After reading k1 i: {q2}.
Not q0

k1 i−−−→ q7.

Staquet Validation with an automaton Learning Automata with Resources 26 / 37



JSON Validation with an automaton

q0 q1

q2 q3 q4

q5 q6

q7 q8 q9

k1
i

, k2

i
{ push α

}
pop α

s
, k2

s

q0, k1, q2

q0, k1, q7

q3, k2, q5

q8, k2, q5

Figure 11: The key graph.

We read { k2 i , k1 i }.

; Valid document.

Potential states for k2 i: {q3, q8}.
After reading k2: {q4, q9}.
After reading k2 i: {q5}.

Not q8
k2 i−−−→ q5.

Potential states for k1 i: {q0}.
After reading k1: {q1}.
After reading k1 i: {q2}.
Not q0

k1 i−−−→ q7.

Staquet Validation with an automaton Learning Automata with Resources 26 / 37



JSON Validation with an automaton

q0 q1

q2 q3 q4

q5 q6

q7 q8 q9

k1
i

, k2

i
{ push α

}
pop α

s
, k2

s

q0, k1, q2

q0, k1, q7

q3, k2, q5

q8, k2, q5

Figure 11: The key graph.

We read { k2 i , k1 i }.

; Valid document.

Potential states for k2 i: {q3, q8}.
After reading k2: {q4, q9}.
After reading k2 i: {q5}.
Not q8

k2 i−−−→ q5.

Potential states for k1 i: {q0}.
After reading k1: {q1}.
After reading k1 i: {q2}.
Not q0

k1 i−−−→ q7.

Staquet Validation with an automaton Learning Automata with Resources 26 / 37



JSON Validation with an automaton

q0 q1

q2 q3 q4

q5 q6

q7 q8 q9

k1
i

, k2

i
{ push α

}
pop α

s
, k2

s

q0, k1, q2

q0, k1, q7

q3, k2, q5

q8, k2, q5

Figure 11: The key graph.

We read { k2 i , k1 i }.

; Valid document.

Potential states for k2 i: {q3, q8}.
After reading k2: {q4, q9}.
After reading k2 i: {q5}.
Not q8

k2 i−−−→ q5.

Potential states for k1 i: {q0}.

After reading k1: {q1}.
After reading k1 i: {q2}.
Not q0

k1 i−−−→ q7.

Staquet Validation with an automaton Learning Automata with Resources 26 / 37



JSON Validation with an automaton

q0 q1

q2 q3 q4

q5 q6

q7 q8 q9

k1
i

, k2

i
{ push α

}
pop α

s
, k2

s

q0, k1, q2

q0, k1, q7

q3, k2, q5

q8, k2, q5

Figure 11: The key graph.

We read { k2 i , k1 i }.

; Valid document.

Potential states for k2 i: {q3, q8}.
After reading k2: {q4, q9}.
After reading k2 i: {q5}.
Not q8

k2 i−−−→ q5.

Potential states for k1 i: {q0}.
After reading k1: {q1}.

After reading k1 i: {q2}.
Not q0

k1 i−−−→ q7.

Staquet Validation with an automaton Learning Automata with Resources 26 / 37



JSON Validation with an automaton

q0 q1

q2 q3 q4

q5 q6

q7 q8 q9

k1
i

, k2

i
{ push α

}
pop α

s
, k2

s

q0, k1, q2

q0, k1, q7

q3, k2, q5

q8, k2, q5

Figure 11: The key graph.

We read { k2 i , k1 i }.

; Valid document.

Potential states for k2 i: {q3, q8}.
After reading k2: {q4, q9}.
After reading k2 i: {q5}.
Not q8

k2 i−−−→ q5.

Potential states for k1 i: {q0}.
After reading k1: {q1}.
After reading k1 i: {q2}.

Not q0
k1 i−−−→ q7.

Staquet Validation with an automaton Learning Automata with Resources 26 / 37



JSON Validation with an automaton

q0 q1

q2 q3 q4

q5 q6

q7 q8 q9

k1
i

, k2

i
{ push α

}
pop α

s
, k2

s

q0, k1, q2

q0, k1, q7

q3, k2, q5

q8, k2, q5

Figure 11: The key graph.

We read { k2 i , k1 i }.

; Valid document.

Potential states for k2 i: {q3, q8}.
After reading k2: {q4, q9}.
After reading k2 i: {q5}.
Not q8

k2 i−−−→ q5.

Potential states for k1 i: {q0}.
After reading k1: {q1}.
After reading k1 i: {q2}.
Not q0

k1 i−−−→ q7.

Staquet Validation with an automaton Learning Automata with Resources 26 / 37



JSON Validation with an automaton

q0 q1

q2 q3 q4

q5 q6

q7 q8 q9

k1
i

, k2

i
{ push α

}
pop α

s
, k2

s

q0, k1, q2

q0, k1, q7

q3, k2, q5

q8, k2, q5

Figure 11: The key graph.

We read { k2 i , k1 i }. ; Valid document.

Potential states for k2 i: {q3, q8}.
After reading k2: {q4, q9}.
After reading k2 i: {q5}.
Not q8

k2 i−−−→ q5.

Potential states for k1 i: {q0}.
After reading k1: {q1}.
After reading k1 i: {q2}.
Not q0

k1 i−−−→ q7.

Staquet Validation with an automaton Learning Automata with Resources 26 / 37



Part IV – Mealy Machines with Timers
Bruyère, Pérez, Staquet, and Vaandrager, “Automata with Timers”, FORMATS, 2023
Bruyère, Garhewal, et al., “Active Learning of Mealy Machines with Timers”, 2024



Mealy machines with Timers Learning Nondeterminism

A Mealy machine with timers
(MMT, for short) is a tuple
M = (I,O,X,Q, q0, χ, δ) where
I X is the set of timers;
I I is the set of inputs; the set of

all actions is:

I ∪ {to[x] | x ∈ X};

I O is the set of outputs;

I Q is the finite set of states;
I q0 ∈ Q is the initial state;
I χ : Q → 2X gives the active

timers of each state;
I δ is the transition function.

q0

q1

q2

i/o, x1 := 1

i/o′, x2 := 2

to[x1]/o, x1 := 1

i/o, x1 := 1

to[x2]/o,⊥

to[x1]/o′,⊥

Figure 12: An MMT.

Staquet Mealy machines with Timers Learning Automata with Resources 28 / 37



Mealy machines with Timers Learning Nondeterminism

A Mealy machine with timers
(MMT, for short) is a tuple
M = (I,O,X,Q, q0, χ, δ) where
I X is the set of timers;
I I is the set of inputs; the set of

all actions is:

I ∪ {to[x] | x ∈ X};

I O is the set of outputs;
I Q is the finite set of states;
I q0 ∈ Q is the initial state;
I χ : Q → 2X gives the active

timers of each state;

I δ is the transition function.

q0 ∅

q1

{x1}

q2 {x1, x2}

i/o, x1 := 1

i/o′, x2 := 2

to[x1]/o, x1 := 1

i/o, x1 := 1

to[x2]/o,⊥

to[x1]/o′,⊥

Figure 12: An MMT.

Staquet Mealy machines with Timers Learning Automata with Resources 28 / 37



Mealy machines with Timers Learning Nondeterminism

A Mealy machine with timers
(MMT, for short) is a tuple
M = (I,O,X,Q, q0, χ, δ) where
I X is the set of timers;
I I is the set of inputs; the set of

all actions is:

I ∪ {to[x] | x ∈ X};

I O is the set of outputs;
I Q is the finite set of states;
I q0 ∈ Q is the initial state;
I χ : Q → 2X gives the active

timers of each state;
I δ is the transition function.

q0 ∅

q1

{x1}

q2 {x1, x2}

i/o, x1 := 1

i/o′, x2 := 2

to[x1]/o, x1 := 1

i/o, x1 := 1

to[x2]/o,⊥

to[x1]/o′,⊥

Figure 12: An MMT.

Staquet Mealy machines with Timers Learning Automata with Resources 28 / 37



Mealy machines with Timers Learning Nondeterminism

q0

∅
q1

{x1}
q2

{x1, x2}
i/o

x1 := 1

i/o′, x2 := 2
to[x1]/o, x1 := 1

i/o, x1 := 1

to[x2]/o,⊥
to[x1]/o′

⊥

(q0, ∅)

1−→ (q0, ∅)
i/o−−→ (q1, x1 = 1)

1−→ (q1, x1 = 0)

to[x1]/o−−−−−→ (q1, x1 = 1)
0−→ (q1, x1 = 1)

i/o′−−→ (q2, x1 = 1, x2 = 2)

1−→ (q2, x1 = 0, x2 = 1)
to[x1]/o′−−−−−→ (q0, ∅)

0.5−−→ (q0, ∅).

Staquet Mealy machines with Timers Learning Automata with Resources 29 / 37



Mealy machines with Timers Learning Nondeterminism

q0

∅
q1

{x1}
q2

{x1, x2}
i/o

x1 := 1

i/o′, x2 := 2
to[x1]/o, x1 := 1

i/o, x1 := 1

to[x2]/o,⊥
to[x1]/o′

⊥

(q0, ∅)
1−→ (q0, ∅)

i/o−−→ (q1, x1 = 1)
1−→ (q1, x1 = 0)

to[x1]/o−−−−−→ (q1, x1 = 1)
0−→ (q1, x1 = 1)

i/o′−−→ (q2, x1 = 1, x2 = 2)

1−→ (q2, x1 = 0, x2 = 1)
to[x1]/o′−−−−−→ (q0, ∅)

0.5−−→ (q0, ∅).

Staquet Mealy machines with Timers Learning Automata with Resources 29 / 37



Mealy machines with Timers Learning Nondeterminism

q0

∅
q1

{x1}
q2

{x1, x2}
i/o

x1 := 1

i/o′, x2 := 2
to[x1]/o, x1 := 1

i/o, x1 := 1

to[x2]/o,⊥
to[x1]/o′

⊥

(q0, ∅)
1−→ (q0, ∅)

i/o−−→ (q1, x1 = 1)

1−→ (q1, x1 = 0)

to[x1]/o−−−−−→ (q1, x1 = 1)
0−→ (q1, x1 = 1)

i/o′−−→ (q2, x1 = 1, x2 = 2)

1−→ (q2, x1 = 0, x2 = 1)
to[x1]/o′−−−−−→ (q0, ∅)

0.5−−→ (q0, ∅).

Staquet Mealy machines with Timers Learning Automata with Resources 29 / 37



Mealy machines with Timers Learning Nondeterminism

q0

∅
q1

{x1}
q2

{x1, x2}
i/o

x1 := 1

i/o′, x2 := 2
to[x1]/o, x1 := 1

i/o, x1 := 1

to[x2]/o,⊥
to[x1]/o′

⊥

(q0, ∅)
1−→ (q0, ∅)

i/o−−→ (q1, x1 = 1)
1−→ (q1, x1 = 0)

to[x1]/o−−−−−→ (q1, x1 = 1)
0−→ (q1, x1 = 1)

i/o′−−→ (q2, x1 = 1, x2 = 2)

1−→ (q2, x1 = 0, x2 = 1)
to[x1]/o′−−−−−→ (q0, ∅)

0.5−−→ (q0, ∅).

Staquet Mealy machines with Timers Learning Automata with Resources 29 / 37



Mealy machines with Timers Learning Nondeterminism

q0

∅
q1

{x1}
q2

{x1, x2}
i/o

x1 := 1

i/o′, x2 := 2
to[x1]/o, x1 := 1

i/o, x1 := 1

to[x2]/o,⊥
to[x1]/o′

⊥

(q0, ∅)
1−→ (q0, ∅)

i/o−−→ (q1, x1 = 1)
1−→ (q1, x1 = 0)

to[x1]/o−−−−−→ (q1, x1 = 1)

0−→ (q1, x1 = 1)
i/o′−−→ (q2, x1 = 1, x2 = 2)

1−→ (q2, x1 = 0, x2 = 1)
to[x1]/o′−−−−−→ (q0, ∅)

0.5−−→ (q0, ∅).

Staquet Mealy machines with Timers Learning Automata with Resources 29 / 37



Mealy machines with Timers Learning Nondeterminism

q0

∅
q1

{x1}
q2

{x1, x2}
i/o

x1 := 1

i/o′, x2 := 2
to[x1]/o, x1 := 1

i/o, x1 := 1

to[x2]/o,⊥
to[x1]/o′

⊥

(q0, ∅)
1−→ (q0, ∅)

i/o−−→ (q1, x1 = 1)
1−→ (q1, x1 = 0)

to[x1]/o−−−−−→ (q1, x1 = 1)
0−→ (q1, x1 = 1)

i/o′−−→ (q2, x1 = 1, x2 = 2)

1−→ (q2, x1 = 0, x2 = 1)
to[x1]/o′−−−−−→ (q0, ∅)

0.5−−→ (q0, ∅).

Staquet Mealy machines with Timers Learning Automata with Resources 29 / 37



Mealy machines with Timers Learning Nondeterminism

q0

∅
q1

{x1}
q2

{x1, x2}
i/o

x1 := 1

i/o′, x2 := 2
to[x1]/o, x1 := 1

i/o, x1 := 1

to[x2]/o,⊥
to[x1]/o′

⊥

(q0, ∅)
1−→ (q0, ∅)

i/o−−→ (q1, x1 = 1)
1−→ (q1, x1 = 0)

to[x1]/o−−−−−→ (q1, x1 = 1)
0−→ (q1, x1 = 1)

i/o′−−→ (q2, x1 = 1, x2 = 2)

1−→ (q2, x1 = 0, x2 = 1)
to[x1]/o′−−−−−→ (q0, ∅)

0.5−−→ (q0, ∅).

Staquet Mealy machines with Timers Learning Automata with Resources 29 / 37



Mealy machines with Timers Learning Nondeterminism

We adapt L# (active learning algorithm for Mealy machines2) to MMTs: L#
MMT.

Theorem 9. Let M be a good MMT and ` be the length of the longest counterexample
returned by the teacher. Then,
I the L#

MMT algorithm eventually terminates
I in time and number of queries polynomial in |M|, |I|, and `, and exponential

in |X|.

Question. When is an MMT good?

2Vaandrager et al., “A New Approach for Active Automata Learning Based on Apartness”, 2022.
Staquet Learning Learning Automata with Resources 30 / 37



Mealy machines with Timers Learning Nondeterminism

We adapt L# (active learning algorithm for Mealy machines2) to MMTs: L#
MMT.

Theorem 9. Let M be a good MMT and ` be the length of the longest counterexample
returned by the teacher. Then,
I the L#

MMT algorithm eventually terminates
I in time and number of queries polynomial in |M|, |I|, and `, and exponential

in |X|.

Question. When is an MMT good?

2Vaandrager et al., “A New Approach for Active Automata Learning Based on Apartness”, 2022.
Staquet Learning Learning Automata with Resources 30 / 37



Mealy machines with Timers Learning Nondeterminism

We adapt L# (active learning algorithm for Mealy machines2) to MMTs: L#
MMT.

Theorem 9. Let M be a good MMT and ` be the length of the longest counterexample
returned by the teacher. Then,
I the L#

MMT algorithm eventually terminates
I in time and number of queries polynomial in |M|, |I|, and `, and exponential

in |X|.

Question. When is an MMT good?

2Vaandrager et al., “A New Approach for Active Automata Learning Based on Apartness”, 2022.
Staquet Learning Learning Automata with Resources 30 / 37



Mealy machines with Timers Learning Nondeterminism

Question. When is an MMT good?

I Timeouts are observed via their outputs.

I For every untimed sequence of transitions, there exists a timed run using exactly
this sequence of transitions…

I with all delays > 0 and there is at most one timer that times out at any time.
↪→ Deterministic behavior.

The last condition does not always hold.

Question. When can we guarantee a deterministic behavior?

Staquet Learning Learning Automata with Resources 31 / 37



Mealy machines with Timers Learning Nondeterminism

Question. When is an MMT good?

I Timeouts are observed via their outputs.
I For every untimed sequence of transitions, there exists a timed run using exactly

this sequence of transitions…

I with all delays > 0 and there is at most one timer that times out at any time.
↪→ Deterministic behavior.

The last condition does not always hold.

Question. When can we guarantee a deterministic behavior?

Staquet Learning Learning Automata with Resources 31 / 37



Mealy machines with Timers Learning Nondeterminism

Question. When is an MMT good?

I Timeouts are observed via their outputs.
I For every untimed sequence of transitions, there exists a timed run using exactly

this sequence of transitions…
I with all delays > 0 and there is at most one timer that times out at any time.

↪→ Deterministic behavior.

The last condition does not always hold.

Question. When can we guarantee a deterministic behavior?

Staquet Learning Learning Automata with Resources 31 / 37



Mealy machines with Timers Learning Nondeterminism

Question. When is an MMT good?

I Timeouts are observed via their outputs.
I For every untimed sequence of transitions, there exists a timed run using exactly

this sequence of transitions…
I with all delays > 0 and there is at most one timer that times out at any time.

↪→ Deterministic behavior.

The last condition does not always hold.

Question. When can we guarantee a deterministic behavior?

Staquet Learning Learning Automata with Resources 31 / 37



Mealy machines with Timers Learning Nondeterminism

q0

∅
q1

{x1}
q2

{x1, x2}
i/o

x1 := 1

i/o′, x2 := 2
to[x1]/o, x1 := 1

i/o, x1 := 1

to[x2]/o,⊥
to[x1]/o′

⊥

(q0, ∅)
1−→ (q0, ∅)

i/o−−→ (q1, x1 = 1)

1−→ (q1, x1 = 0)

to[x1]/o−−−−−→ (q1, x1 = 1)

0−→ (q1, x1 = 1)

i/o′−−→ (q2, x1 = 1, x2 = 2)

1−→ (q2, x1 = 0, x2 = 1)

to[x1]/o′−−−−−→ (q0, ∅)
0.5−−→ (q0, ∅).

(q0, ∅)
1−→ (q0, ∅)

i/o−−→ (q1, x1 = 1)

1−→ (q1, x1 = 0)

i/o′−−→ (q2, x1 = 0, x2 = 2)

0−→ (q2, x1 = 0, x2 = 2)

to[x1]/o′−−−−−→ (q0, ∅)
1.5−−→ (q0, ∅).

Staquet Nondeterminism Learning Automata with Resources 32 / 37



Mealy machines with Timers Learning Nondeterminism

q0

∅
q1

{x1}
q2

{x1, x2}
i/o

x1 := 1

i/o′, x2 := 2
to[x1]/o, x1 := 1

i/o, x1 := 1

to[x2]/o,⊥
to[x1]/o′

⊥

(q0, ∅)
1−→ (q0, ∅)

i/o−−→ (q1, x1 = 1)

1−→ (q1, x1 = 0)

to[x1]/o−−−−−→ (q1, x1 = 1)

0−→ (q1, x1 = 1)

i/o′−−→ (q2, x1 = 1, x2 = 2)

1−→ (q2, x1 = 0, x2 = 1)

to[x1]/o′−−−−−→ (q0, ∅)
0.5−−→ (q0, ∅).

B1

B2

Figure 13: The blocks of the timed run on the
left.

Staquet Nondeterminism Learning Automata with Resources 33 / 37



Mealy machines with Timers Learning Nondeterminism

Definition 10. We have a race when two actions happen simultaneously.

Question. Can we avoid a race, while seeing the same untimed sequence of
transitions?

B1

B2

;
B1

B2

B2

B3
B1

Staquet Nondeterminism Learning Automata with Resources 34 / 37



Mealy machines with Timers Learning Nondeterminism

Definition 10. We have a race when two actions happen simultaneously.

Question. Can we avoid a race, while seeing the same untimed sequence of
transitions?

B1

B2

;
B1

B2

B2

B3
B1

Staquet Nondeterminism Learning Automata with Resources 34 / 37



Mealy machines with Timers Learning Nondeterminism

Definition 10. We have a race when two actions happen simultaneously.

Question. Can we avoid a race, while seeing the same untimed sequence of
transitions?

B1

B2

;
B1

B2

B2

B3
B1

Staquet Nondeterminism Learning Automata with Resources 34 / 37



Mealy machines with Timers Learning Nondeterminism

Theorem 11. Given an MMT M, deciding whether every untimed sequence of M
can be observed via a timed run in which there is no race is PSPACE-hard and in
3EXP.
It is in PSPACE if the inputs I and the timers X are fixed.

Staquet Nondeterminism Learning Automata with Resources 35 / 37



Part V – Conclusion



Conclusion

Goals of the thesis:
I New learning algorithms for automata extended with

I a counter (Part 2),
I timers (Part 4).

I Validation algorithm relying on learning an automaton with a stack (Part 3).

Thank you!

Staquet Conclusion Learning Automata with Resources 37 / 37



References DFA Mealy machines ROCAs JSON Timers

References I

Angluin, Dana. “Learning Regular Sets from Queries and Counterexamples”. In: 75.2
(1987), pp. 87–106. doi: 10.1016/0890-5401(87)90052-6. url:
https://doi.org/10.1016/0890-5401(87)90052-6.
Bruyère, Véronique, Bharat Garhewal, et al. “Active Learning of Mealy Machines with
Timers”. In: CoRR abs/2403.02019 (2024). doi: 10.48550/ARXIV.2403.02019.
arXiv: 2403.02019. url: https://doi.org/10.48550/arXiv.2403.02019.

Staquet Learning Automata with Resources 1 / 42

https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.48550/ARXIV.2403.02019
https://arxiv.org/abs/2403.02019
https://doi.org/10.48550/arXiv.2403.02019


References DFA Mealy machines ROCAs JSON Timers

References II

Bruyère, Véronique, Guillermo A. Pérez, and Gaëtan Staquet. “Learning Realtime
One-Counter Automata”. In: Tools and Algorithms for the Construction and Analysis
of Systems - 28th International Conference, TACAS 2022, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2022,
Munich, Germany, April 2-7, 2022, Proceedings, Part I. Ed. by Dana Fisman and
Grigore Rosu. Vol. 13243. Springer, 2022, pp. 244–262. doi:
10.1007/978-3-030-99524-9\_13. url:
https://doi.org/10.1007/978-3-030-99524-9%5C_13.

Staquet Learning Automata with Resources 2 / 42

https://doi.org/10.1007/978-3-030-99524-9\_13
https://doi.org/10.1007/978-3-030-99524-9%5C_13


References DFA Mealy machines ROCAs JSON Timers

References III

Bruyère, Véronique, Guillermo A. Pérez, and Gaëtan Staquet. “Validating Streaming
JSON Documents with Learned VPAs”. In: Tools and Algorithms for the
Construction and Analysis of Systems - 29th International Conference, TACAS 2023,
Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2022, Paris, France, April 22-27, 2023, Proceedings, Part I. Ed. by
Sriram Sankaranarayanan and Natasha Sharygina. Vol. 13993. Springer, 2023,
pp. 271–289. doi: 10.1007/978-3-031-30823-9\_14. url:
https://doi.org/10.1007/978-3-031-30823-9%5C_14.

Staquet Learning Automata with Resources 3 / 42

https://doi.org/10.1007/978-3-031-30823-9\_14
https://doi.org/10.1007/978-3-031-30823-9%5C_14


References DFA Mealy machines ROCAs JSON Timers

References IV

Bruyère, Véronique, Guillermo A. Pérez, Gaëtan Staquet, and Frits W. Vaandrager.
“Automata with Timers”. In: Formal Modeling and Analysis of Timed Systems - 21st
International Conference, FORMATS 2023, Antwerp, Belgium, September 19-21,
2023, Proceedings. Ed. by Laure Petrucci and Jeremy Sproston. Vol. 14138. Springer,
2023, pp. 33–49. doi: 10.1007/978-3-031-42626-1\_3. url:
https://doi.org/10.1007/978-3-031-42626-1%5C_3.
Isberner, Malte. “Foundations of active automata learning: an algorithmic
perspective”. PhD thesis. Technical University Dortmund, Germany, 2015. url:
https://hdl.handle.net/2003/34282.
Neider, Daniel and Christof Löding. Learning visibly one-counter automata in
polynomial time. Tech. rep. Technical Report AIB-2010-02, RWTH Aachen (January
2010), 2010.

Staquet Learning Automata with Resources 4 / 42

https://doi.org/10.1007/978-3-031-42626-1\_3
https://doi.org/10.1007/978-3-031-42626-1%5C_3
https://hdl.handle.net/2003/34282


References DFA Mealy machines ROCAs JSON Timers

References V

Vaandrager, Frits W. et al. “A New Approach for Active Automata Learning Based
on Apartness”. In: Tools and Algorithms for the Construction and Analysis of
Systems - 28th International Conference, TACAS 2022, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich,
Germany, April 2-7, 2022, Proceedings, Part I. Ed. by Dana Fisman and Grigore Rosu.
Vol. 13243. Springer, 2022, pp. 223–243. doi: 10.1007/978-3-030-99524-9\_12.
url: https://doi.org/10.1007/978-3-030-99524-9%5C_12.

Staquet Learning Automata with Resources 5 / 42

https://doi.org/10.1007/978-3-030-99524-9\_12
https://doi.org/10.1007/978-3-030-99524-9%5C_12


Part VI – Appendix
Appendix



References DFA Mealy machines ROCAs JSON Timers

12. DFA

13. Mealy machines

14. ROCAs

15. JSON

16. Timers

Staquet DFA Learning Automata with Resources 7 / 42



References DFA Mealy machines ROCAs JSON Timers

Definition 12 (Myhill-Nerode congruence). Two words u, v are L-equivalent, noted
u∼L v, if

∀w ∈ Σ∗ : u · w ∈ L ⇔ v · w ∈ L.

Staquet DFA Learning Automata with Resources 8 / 42



References DFA Mealy machines ROCAs JSON Timers

12. DFA

13. Mealy machines

14. ROCAs

15. JSON

16. Timers

Staquet Mealy machines Learning Automata with Resources 9 / 42



References DFA Mealy machines ROCAs JSON Timers

A Mealy machine (MM, for short) is a tuple
A = (I,O,Q, q0, δ) where:
I I is the set of inputs,
I O is the set of outputs,
I Q is the finite, non-empty set of states,
I q0 ∈ Q is the initial state,
I δ : Q × I → Q ×O is the transition

function.

q0 q1

q2

i/o

i/o

j/o

i/o′

j/o′ j/o

Figure 14: An MM.

Staquet Mealy machines Learning Automata with Resources 10 / 42



References DFA Mealy machines ROCAs JSON Timers

Learner Teacher
Knows an MM M

OQ(w) : outputs of qM0
w−→?

outputs of the run

EQ(H) : M≈H?

yes or a counterexample

Figure 15: Adaptation of Angluin’s framework for Mealy machines.

Staquet Mealy machines Learning Automata with Resources 11 / 42



References DFA Mealy machines ROCAs JSON Timers

Theorem 13 (Vaandrager et al., “A New Approach for Active Automata Learning
Based on Apartness”, 2022). Let n be the size of a minimal MM equivalent to the
teacher’s MM, and ` be the length of the longest counterexample provided by the
teacher. Then,
I the L# algorithm eventually terminates,
I in time and space polynomial in n and `,
I with at most n− 1 equivalence queries and O

(
n2 + n log `

)
membership

queries.

Staquet Mealy machines Learning Automata with Resources 12 / 42



References DFA Mealy machines ROCAs JSON Timers

12. DFA

13. Mealy machines

14. ROCAs
1. Visibly one-counter automata
2. Behavior graph
3. Learning
4. Experimental results

15. JSON

16. Timers

Staquet ROCAs Learning Automata with Resources 13 / 42



References DFA Mealy machines ROCAs JSON Timers

SREG

SVCL

SROCL

SDOCL

SOCL

SCFL

Figure 16: Hierarchy of one-counter languages.

Staquet ROCAs Learning Automata with Resources 14 / 42



References DFA Mealy machines ROCAs JSON Timers

A pushdown alphabet, noted Σ̃ = Σc ∪ Σr ∪ Σint , is the union of three disjoint
alphabets:
I Σc: calls,
I Σr: returns,
I Σint : internal symbols.

The sign of a symbol a ∈ Σ̃ is:

sign(a) =


1 if a ∈ Σc

−1 if a ∈ Σr

0 if a ∈ Σint .

Staquet ROCAs — Visibly one-counter automata Learning Automata with Resources 15 / 42



References DFA Mealy machines ROCAs JSON Timers

The counter value of a word w = a1 · · · an is

cv(w) =
n∑

`=0

sign(a`).

The height of w is
height(w) = max

u∈Pref (w)
cv(u).

Staquet ROCAs — Visibly one-counter automata Learning Automata with Resources 16 / 42



References DFA Mealy machines ROCAs JSON Timers

A visibly one-counter automaton (VCA, for
short) is a tuple A = (Σ̃, Q, q0, F , δ) where:
I Σ̃ is the pushdown alphabet,
I Q is the finite, non-empty set of states,
I q0 ∈ Q is the initial state,
I F ⊆ Q is the set of final states,
I δ : Q × Σ̃× {=0, >0} → Q is the

transition function.

q0

q1

q2

ac[=0]

bint [=0]

aint [=0]
bint [=0]

bint [=
0
]

ac[>0]

bint [>0]

ar[>0]bint [>0]

aint [>0]
bint [>0]

Figure 17: A VCA.

Staquet ROCAs — Visibly one-counter automata Learning Automata with Resources 17 / 42



References DFA Mealy machines ROCAs JSON Timers

Definition 14 (Myhill-Nerode congruence). Two words u, v are L-equivalent, noted
u∼L v, if

∀w ∈ Σ∗ : u · w ∈ L ⇔ v · w ∈ L.

Proposition 15 (Not in Neider and Löding, Learning visibly one-counter automata
in polynomial time, 2010). Let L be a language accepted by some VCA, and u, v ∈
Pref (L) such that u∼L v. Then, cv(u) = cv(v).

The behavior graph of L is constructed from the equivalence classes of ∼L, restricted
to co-reachable states.

Staquet ROCAs — Visibly one-counter automata Learning Automata with Resources 18 / 42



References DFA Mealy machines ROCAs JSON Timers

ε

1
ac

1
acac

1
acacac

1
. . .

bint

2
acbint

2
acacbint

2

acacacbint

2
. . .

ac ac ac ac

ar ar ar ar

bint bint bint bint

aint , bint bint bint bint

Initial part Repeating part

Figure 18: A behavior graph BG(L).

Staquet ROCAs — Visibly one-counter automata Learning Automata with Resources 19 / 42



References DFA Mealy machines ROCAs JSON Timers

Question. How to encode the behavior graph in a finite representation?

Definition 16. The level ` of BG(L) is:

level(BG(L), `) = {JwK∼L | cv(w) = `}.

The width of BG(L) is:

width(BG(L)) = max
`∈N

level(BG(L), `).

Proposition 17. The width of BG(L) is always bounded.

Staquet ROCAs — Visibly one-counter automata Learning Automata with Resources 20 / 42



References DFA Mealy machines ROCAs JSON Timers

Question. How to encode the behavior graph of a VCL in a finite representation?

Enumerate the states in level `:

ν` : level(BG(L), `) → {1, . . . ,K},

with K = width(BG(L)).

Encode the transitions of BG(L):

τ` : {1, . . . ,K} × Σ̃ → {1, . . . ,K}.

That encoding is unique, given the
enumerations ν`.

Theorem 18. For any VCL L, there exists an enumeration

ν` : level(BG(L), `) → {1, . . . ,width(BG(L))}

such that τ0τ1 · · · is ultimately periodic, i.e., there are an offset m > 0 and a
period k ≤ 0 such that τ0 · · · τm−1(τm · · · τm+k−1)

ω.

Staquet ROCAs — Visibly one-counter automata Learning Automata with Resources 21 / 42



References DFA Mealy machines ROCAs JSON Timers

Theorem 19. For any ROCL L, there exists a VCL L̃ such that BG(L) and BG(L̃)
are isomorphic (up to a change of alphabet).
The isomorphism respects the counter values and both offset and period of ultimately
periodic descriptions.

Staquet ROCAs — Behavior graph Learning Automata with Resources 22 / 42



References DFA Mealy machines ROCAs JSON Timers

ε a aa aaa . . .

b ab aab aaab . . .

a

b

a

b

a

b

a

b

a a a a

a, b b b b

Initial part Repeating part

Figure 19: A behavior graph BG(L).

Staquet ROCAs — Behavior graph Learning Automata with Resources 23 / 42



References DFA Mealy machines ROCAs JSON Timers

(0, 1) (1, 1) (2, 1)

(0, 2) (1, 2) (2, 2)

a[=0]/0

b[=0]/0

a[=0]/0

b[=0]/0

a[=0]/+1

a[=0]/0
b[=0]/0

b[=0]/0

b[>0]/0

a[>0]/+1

a[>0]/+1

b[>0]/0

b[>0]/0

a[>0]/−1

a[>0]/−1

Figure 20: An ROCA constructed from BG(L).

Staquet ROCAs — Behavior graph Learning Automata with Resources 23 / 42



References DFA Mealy machines ROCAs JSON Timers

Question. When is it possible to construct an ROCA from the observation table?

The table must be closed:
∀u ∈ RΣ : Approx(u) ∩R 6= ∅.

If not, add u to R.

The table must be Σ-consistent:
∀u ∈ R, a ∈ Σ, v ∈ Approx(u) ∩R :

u · a ∈ Approx(v · a).

If not, add a · s to S, with s ∈ S the
culprit of u · a /∈ Approx(v · a).

Staquet ROCAs — Learning Learning Automata with Resources 24 / 42



References DFA Mealy machines ROCAs JSON Timers

Question. When is it possible to construct an ROCA from the observation table?

The table must be ⊥-consistent:

∀u ∈ R ∪RΣ, v ∈ Approx(u), s ∈ S : C(u · s) = ⊥ ⇔ C(v · s) = ⊥.

If not (assuming C(u · s) 6= ⊥):

u s

u′ s′

s′′

If u′ is a prefix of u, add all suffixes of s′′
to S.

u s

u′ s′

s′′

If u is a proper prefix of u′:
I v · s′′ ∈ L≤`(L) ; add all suffixes of

s′′ to Ŝ;
I v · s′′ /∈ L≤`(L) ; add all suffixes of

s′′ to Ŝ and S.
Staquet ROCAs — Learning Learning Automata with Resources 25 / 42



References DFA Mealy machines ROCAs JSON Timers

1
2

3
4

5 1

2

3

4
0

500

1,000

ROCA size
Alph

abet
size

Ti
m

e
(s

)

(a) Mean of the total time.

1
2

3
4 1

2

3

4
0

500

ROCA size
Alph

abet
size

Si
ze

of
R

f

(b) Mean of the final size of
representatives.

1
2

3
4

5 1

2

3

4
0

500

ROCA size
Alph

abet
size

Si
ze

of
Ŝ
f

(c) Mean of the final size of
separators.

Figure 21: Results for the benchmarks based on random ROCAs.

Staquet ROCAs — Experimental results Learning Automata with Resources 26 / 42



References DFA Mealy machines ROCAs JSON Timers

12. DFA

13. Mealy machines

14. ROCAs

15. JSON
1. Experimental results

16. Timers

Staquet JSON Learning Automata with Resources 27 / 42



References DFA Mealy machines ROCAs JSON Timers

A visibly pushdown automaton (VPA, for
short) is a tuple A = (Σ̃,Γ, Q, q0, F , δ) where:
I Σ̃ is the pushdown alphabet,
I Q is the finite, non-empty set of states,
I q0 ∈ Q is the initial state,
I F ⊆ Q is the set of final states,
I δ = δc ∪ δr ∪ δint is the transition

relation:
I δc ⊆ (Q × Σc)× (Q × Γ),
I δr ⊆ (Q × Σr × Γ)×Q,
I δint ⊆ (Q × Σint)×Q.

q0

q1

q2

a/γb

ā[γ]

ā[γ]

Figure 22: A VPA.

Staquet JSON Learning Automata with Resources 28 / 42



References DFA Mealy machines ROCAs JSON Timers

The key graph GA of a VPA A has:
I the vertices (p, k, p′) with p, p′ ∈ QA and k ∈ Σkey if there exists a stacked run

(p, ε)
k·v−−→ (p′, ε) ∈ sruns(A)

with
v ∈ ΣpVal ∪ {a · u · ā | a ∈ Σc, u ∈ WM(Σ̃JSON)},

and
I the edges ((p1, k1, p

′
1), (p2, k2, p

′
2)) if there exists an internal transition p′1

#−→ p2.

Staquet JSON Learning Automata with Resources 29 / 42



References DFA Mealy machines ROCAs JSON Timers

Lemma 20. In a key graph GA, there exists a path

((p1, k1, p
′
1)(p2, k2, p

′
2) . . . (pn, kn, p

′
n))

with p1 = qA0 if and only if there exist
I a word u = k1v1 # k2v2 # . . . # knvn such that each kivi is a key-value pair and

u is a factor of a word in L<(G), and
I a path (qA0 , ε)

u−→ (p′n, ε) ∈ sruns(A) that decomposes as follows:

∀i ∈ {1, . . . , n} : (pi, ε)
kivi−−→ (p′i, ε)

and
∀i ∈ {1, . . . , n− 1} : (p′i, ε)

#−→ (pi+1, ε).

Staquet JSON Learning Automata with Resources 30 / 42



References DFA Mealy machines ROCAs JSON Timers

Time Membership Equivalence |Q|

9590.3 s 4246085.0 36.4 150.0

(a) Learning.

Time Computation Storage Size

1715 s 11827 kB 419 kB 418

(b) Computation of the key graph.

0 50K 100K
0

40

80

Document size

T
im

e
(m

s)

(c) Time usage (ms) for validation.

0 50K 100K
0

3K

6K

Document size

M
em

or
y

(k
B

)

(d) Mem. usage (kB) for validation.

Figure 23: Results for VIM plugins, with |Σkey| = 16. Red circles = classical algorithm. Blue
crosses = our algorithm.

Staquet JSON — Experimental results Learning Automata with Resources 31 / 42



References DFA Mealy machines ROCAs JSON Timers

We use Boolean operations to force the classical algorithm to explore multiple branches,
while our algorithm is immediate.

10 20 30
0

5

10

15

Document size

(a) Time usage (ms).

10 20 30
0

2K

4K

Document size

(b) Mem. usage (kB).

Figure 24: Results for a worst case, with |Σkey| = 1. Red circles = classical algorithm. Blue
crosses = our algorithm.

Staquet JSON — Experimental results Learning Automata with Resources 32 / 42



References DFA Mealy machines ROCAs JSON Timers

12. DFA

13. Mealy machines

14. ROCAs

15. JSON

16. Timers
1. Definitions
2. Regions
3. Race

Staquet Timers Learning Automata with Resources 33 / 42



References DFA Mealy machines ROCAs JSON Timers

A run p0
i1−→
u1

· · · in−→
un

pn is said x-spanning (with x ∈ X) if it begins with a transition
(re)starting x, ends with a to[x]-transition, and no intermediate transition restarts or
stops x. That is,
I u1 = (x, c),
I in = to[x],
I uj 6= (x, d) for all j ∈ {2, . . . , n− 1} and d ∈ N>0, and
I x ∈ χ(pj) for all j ∈ {2, . . . , n− 1}.

Staquet Timers — Definitions Learning Automata with Resources 34 / 42



References DFA Mealy machines ROCAs JSON Timers

Let

ρ = (p0, κ0)
d1−→ (p0, κ0 − d1)

i1−→
u1

(p1, κ1)
d2−→ · · ·

in−→
un

(pn, κn)
dn+1−−−→ (pn, κn − dn+1) ∈ truns(M)

be a timed run. A block of ρ is a pair B = (k1k2 . . . km, γ) such that ik1 , ik2 , . . . , ikm is
a maximal subsequence of actions of ρ such that
I ik1 ∈ I,

I pk`−1

ik` ···ik`+1−−−−−−→ pk`+1
is x-spanning for some timer x and for all 1 ≤ ` < m, and

I γ is the timer fate of B defined as:

γ =


⊥ if ikm does not restart any timer

if ikm restarts a timer which is discarded (by some i`, with
km < ` ≤ n or by the end of the run), when its value is zero

× otherwise.

Staquet Timers — Definitions Learning Automata with Resources 35 / 42



References DFA Mealy machines ROCAs JSON Timers

Theorem 21. For every MMT M, there exists a timed Mealy machine N such that
M and N output the same timed words.
The opposite direction does not hold.

Staquet Timers — Definitions Learning Automata with Resources 36 / 42



References DFA Mealy machines ROCAs JSON Timers

Let M = (I,O,X,Q, q0, χ, δ) be an MMT. Two valuations κ and κ′ are said
timer-equivalent, noted κ ∼= κ′, if dom(κ) = dom(κ′) and the following hold:
I for all x ∈ X, bκ(x)c = bκ′(x)c and
I for all x ∈ X, frac(κ(x)) = 0 if and only if frac(κ′(x)) = 0, and
I for all x1, x2 ∈ X, frac(κ(x1)) ≤ frac(κ(x2)) if and only if

frac(κ′(x1)) ≤ frac(κ′(x2)).
A timer region for M is an equivalence class of timer valuations induced by ∼=.
We lift the relation to configurations: (q, κ) ∼= (q′, κ′) if and only if κ ∼= κ′ and q = q′.

Staquet Timers — Regions Learning Automata with Resources 37 / 42



References DFA Mealy machines ROCAs JSON Timers

The region automaton of M is denoted R(M) and such that
I its alphabet is Σ = {τ} ∪A(M),
I its set of states QR(M) is the quotient of the configurations by ∼=, i.e.

QR(M) = {(q, κ) | q ∈ Q,κ ∈ Val(χ(q))}/∼=,

I its initial state q
R(M)
0 is the class of the initial configuration of M, i.e.,

q
R(M)
0 = J(qM0 , ∅)K∼= = (qM0 , J∅K∼=)

(by definition of ∼=),
I its transition relation δ ⊆ S × Σ× S includes

I J(q, κ)K∼=
τ−→ J(q, κ− d)K∼= if (q, κ) d−→ (q, κ− d) in M whenever d > 0, and

I J(q, κ)K∼=
i−→ J(q′, κ′)K∼= if (q, κ) i−→

u
(q′, κ′) in M.

Staquet Timers — Regions Learning Automata with Resources 38 / 42



References DFA Mealy machines ROCAs JSON Timers

Lemma 22. Let M be an MMT and R(M) be its region automaton. For a timer x ∈
X, cx denotes the largest constant to which x is updated in M. Let C = maxx∈X cx.
Then, ∣∣∣QR(M)

∣∣∣ ≤ ∣∣QM∣∣ · |X|! · 2|X| · (C + 1)|X|

and
∃(q, κ) w−→ (q′, κ′) ∈ truns(M) ⇔ ∃J(q, κ)K∼=

w−→ J(q′, κ′)K∼= ∈ runs(R(M)).

Staquet Timers — Regions Learning Automata with Resources 39 / 42



References DFA Mealy machines ROCAs JSON Timers

(q0, ∅)
1−→ (q0, ∅)
i/o−−→ (q1, x1 = 1)

1−→ (q1, x1 = 0)

to[x1]/o−−−−−→ (q1, x1 = 1)

0−→ (q1, x1 = 1)

i/o′−−→ (q2, x1 = 1, x2 = 2)

1−→ (q2, x1 = 0, x2 = 1)

to[x1]/o′−−−−−→ (q0, ∅)
0.5−−→ (q0, ∅).

B1

B2

Figure 25: The blocks of the timed run.

Definition 23. We have a race when
two actions happen simultaneously.

B2B1

Figure 26: The block graphs of the race.

Staquet Timers — Race Learning Automata with Resources 40 / 42



References DFA Mealy machines ROCAs JSON Timers

(q0, ∅)
1−→ (q0, ∅)
i/o−−→ (q1, x1 = 1)

1−→ (q1, x1 = 0)

to[x1]/o−−−−−→ (q1, x1 = 1)

0−→ (q1, x1 = 1)

i/o′−−→ (q2, x1 = 1, x2 = 2)

1−→ (q2, x1 = 0, x2 = 1)

to[x1]/o′−−−−−→ (q0, ∅)
0.5−−→ (q0, ∅).

B1

B2

Figure 25: The blocks of the timed run.

Definition 23. We have a race when
two actions happen simultaneously.

B2B1

Figure 26: The block graphs of the race.

Staquet Timers — Race Learning Automata with Resources 40 / 42



References DFA Mealy machines ROCAs JSON Timers

(q0, ∅)
1−→ (q0, ∅)
i/o−−→ (q1, x1 = 1)

1−→ (q1, x1 = 0)

to[x1]/o−−−−−→ (q1, x1 = 1)

0−→ (q1, x1 = 1)

i/o′−−→ (q2, x1 = 1, x2 = 2)

1−→ (q2, x1 = 0, x2 = 1)

to[x1]/o′−−−−−→ (q0, ∅)
0.5−−→ (q0, ∅).

B1

B2

Figure 25: The blocks of the timed run.

Definition 23. We have a race when
two actions happen simultaneously.

B2B1

Figure 26: The block graphs of the race.

Staquet Timers — Race Learning Automata with Resources 40 / 42



References DFA Mealy machines ROCAs JSON Timers

(q0, ∅)
1−→ (q0, ∅)
i/o−−→ (q1, x1 = 1)

1−→ (q1, x1 = 0)

to[x1]/o−−−−−→ (q1, x1 = 1)

0−→ (q1, x1 = 1)

i/o′−−→ (q2, x1 = 1, x2 = 2)

1−→ (q2, x1 = 0, x2 = 1)

to[x1]/o′−−−−−→ (q0, ∅)
0.5−−→ (q0, ∅).

B1

B2

Figure 25: The blocks of the timed run.

Definition 23. We have a race when
two actions happen simultaneously.

B2B1

Figure 26: The block graphs of the race.

Staquet Timers — Race Learning Automata with Resources 40 / 42



References DFA Mealy machines ROCAs JSON Timers

B2

B3
B1 B1 B2 B3

Figure 27: Blocks for a timed run in which races are not avoidable, and its block graph.

Proposition 24. A timed run has unavoidable races iff its block graph is cyclic.

Proposition 25. There exists an MSO formula to decide whether there exists a timed
run whose block graph is cyclic.

Staquet Timers — Race Learning Automata with Resources 41 / 42



References DFA Mealy machines ROCAs JSON Timers

B2

B3
B1 B1 B2 B3

Figure 27: Blocks for a timed run in which races are not avoidable, and its block graph.

Proposition 24. A timed run has unavoidable races iff its block graph is cyclic.

Proposition 25. There exists an MSO formula to decide whether there exists a timed
run whose block graph is cyclic.

Staquet Timers — Race Learning Automata with Resources 41 / 42



References DFA Mealy machines ROCAs JSON Timers

B2

B3
B1 B1 B2 B3

Figure 27: Blocks for a timed run in which races are not avoidable, and its block graph.

Proposition 24. A timed run has unavoidable races iff its block graph is cyclic.

Proposition 25. There exists an MSO formula to decide whether there exists a timed
run whose block graph is cyclic.

Staquet Timers — Race Learning Automata with Resources 41 / 42



References DFA Mealy machines ROCAs JSON Timers

Let B,B′ be two blocks of a padded timed run ρ with timer fates γ and γ′. We say that
B and B′ participate in a race if:
I either there exist actions i ∈ B and i′ ∈ B′ such that the sum of the delays

between i and i′ in ρ is equal to zero, i.e., no time elapses between them,
I or there exists an action i ∈ B that is the first action along ρ to discard the timer

started by the last action i′ ∈ B′ and γ′ = , i.e., the timer of B′ (re)started by i′

reaches value zero when i discards it.
We also say that the actions i and i′ participate in this race.

Staquet Timers — Race Learning Automata with Resources 42 / 42


	Preliminaries
	Introduction
	Finite automata
	Learning with L*

	Learning Realtime One-Counter Automata
	Realtime One-Counter Automata
	Behavior graph

	Learning
	Why exponential blowup?


	Validating JSON Documents
	JSON
	Validation with an automaton

	Mealy Machines with Timers
	Mealy machines with Timers
	Learning
	Nondeterminism

	Conclusion
	Conclusion

	Appendix
	References
	Appendix
	DFA
	Mealy machines
	ROCAs
	Visibly one-counter automata
	Behavior graph
	Learning
	Experimental results

	JSON
	Experimental results

	Timers
	Definitions
	Regions
	Race




